K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2018

Chọn đáp án B.

23 tháng 4 2017

Chọn A

Ta có: g(x) = f(x-2017) - 2018x + 2019.

Nhận xét: tịnh tiến đồ thị hàm số y = f'(x) sang bên phải theo phương của trục hoành 2017 đơn vị ta được đồ thị hàm số y = f'(x-2017) . Do đó, số nghiệm của phương trình f'(x) = 2018 bằng số nghiệm của phương trình (*).

Dựa vào đồ thị ta thấy phương trình (*) có nghiệm đơn duy nhất hay hàm số đã cho có duy nhất 1 điểm cực trị.

12 tháng 12 2019

11 tháng 6 2019

Dựa vào đồ thị hàm số y= f’(x)  suy ra phương trình f’( x- 2017) = 2018  có 1 nghiệm đơn duy nhất. 

 

Suy ra hàm số y= g( x)  có 1 điểm cực trị

11 tháng 6 2017

Ta có 

Dựa vào đồ thị hàm số y = f'(x) suy ra phương trình 

có 1 nghiệm đơn duy nhất. Suy ra hàm số g(x) có 1 điểm cực trị. 

Chọn A.

23 tháng 10 2017

Ta có: f' (x - 2) = f' (x).(x-2)' = f'(x) 

Do đó; đồ thị hàm số y= f’ (x) có hình dạng tương tự như trên.

Đồ thị hàm số y= f( x-2)  có 3 điểm cực trị khi và chỉ khi đồ thị hàm số y= f( x) cũng có 3 điểm cực trị.

Chọn D.

14 tháng 7 2018

Đáp án D

Phương pháp : Nhận xét : f’(x – 2) = f’(x)

Cách giải : Ta có : f’(x – 2) = (x – 2)’. f’(x) = f’(x) Đồ thị hàm số y = f’(x) có hình dạng tương tự như trên.

Đồ thị hàm số y = f(x – 2)có 3 điểm cực trị => Đồ thị hàm số y = f(x) cũng có 3 điểm cực trị

23 tháng 10 2018

9 tháng 1 2017

Đáp án B

Ta có:  y = f x − 2017 − 2018 x + 2019 ⇒ y ' x − 2017 x − 2017 ' − 2018

= f ' x − 2017 − 2018

Dựa vào đồ thị hàm số y = f ' x suy ra PT f ' x − 2017 = f t = 2018  có 1 nghiệm bội lẻ duy nhất

Suy ra hàm số y = f x − 2017 − 2018 x + 2019  có 1 điểm cực trị

19 tháng 4 2017

Đáp án B

f'(x) đổi dấu 1 lần, suy ra đồ thị hàm số f(x) có 1 điểm cực trị.