Cho tam giác ABC (AB < AC). Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy điểm E sao cho AE = AB. Chứng minh
a,AD song song với BE
b,Cho ED cắt AB tại I. So sánh AI và AC
c,AD song song với IC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
Do đo: ΔABD=ΔAED
Suy ra: DB=DE
b: Xét ΔDBH và ΔDEC có
góc DBH=góc DEC
DB=DE
góc BDH=góc EDC
Do đó: ΔDBH=ΔDEC
c: Ta có: ΔDBH=ΔDEC
nên góc DHB=góc DCE
d: Ta có: AH=AB+BH
AC=AE+EC
mà AB=AE; BH=EC
nên AH=AC
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>DA=DE và góc BED=góc BAD=90 độ
b; AH vuông góc BC
DE vuông góc BC
=>AH//DE
Tự vẽ hình.
a) Xét tam giác OAB có AB // CD
⇒AOOC=OBOD=ABDC⇒12OC=93=18DC⇒AOOC=OBOD=ABDC⇒12OC=93=18DC ( Hệ quả định lý Ta - lét ) (1)
=> OC = 4cm, DC = 6cm
Vậy OC = 4cm và DC = 6cm
b) Xét tam giác FAB có DC // AB
⇒FDAD=FCCB⇒FD.BC=FC.AD⇒FDAD=FCCB⇒FD.BC=FC.AD ( ĐPCM )
c) Theo (1), ta đã có:
OAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBDOAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBD (2)
Vì MN // AB mà AB // DC => MN // DC
Xét tam giác ADC có MO// DC
⇒MODC=AOAC⇒MODC=AOAC ( Hệ quả định lý Ta - lét ) (3)
CMTT : ONDC=OBDBONDC=OBDB (4)
Từ (2), (3) và (4) => MODC=NODC⇒MO=NOMODC=NODC⇒MO=NO ( ĐPCM )
a)
Xét ΔABD và ΔAED có:
AB=AE (giả thiết)
Góc BAD= góc EAD (do AD là phân giác góc A)
AD chung
⇒⇒ ΔABD=ΔAED (c-g-c)
b) Ta có ΔABD=ΔAED
⇒⇒ BD=DE và góc ABD= góc AED
⇒⇒ Góc FBD= góc CED (hai góc kề bù với hai góc bằng nhau)
Xét ΔDBF và ΔDEC có:
BD=DE
Góc DBF= góc DEC
Góc BDF= góc EDC ( đối đỉnh )
⇒⇒ ΔDBF=ΔDEC (g-c-g)
Có sai đề ko vậy bạn??
Sửa lại đề câu a và c là chứng minh vuông góc nha bạn
Gọi AD giao BE tại H
\(a,\left\{{}\begin{matrix}AB=AD\\\widehat{BAD}=\widehat{DAE}\\AH.chung\end{matrix}\right.\Rightarrow\Delta ABH=\Delta AEH\left(c.g.c\right)\\ \Rightarrow\widehat{AHB}=\widehat{AHE}\)
Mà \(\widehat{AHB}+\widehat{AHE}=180^0\Rightarrow\widehat{AHB}=\widehat{AHE}=90^0\)
Vậy \(AH\perp BE\) hay \(AD\perp BE\)
\(b,\left\{{}\begin{matrix}AD.chung\\AB=AE\\\widehat{BAD}=\widehat{DAE}\end{matrix}\right.\Rightarrow\Delta BAD=\Delta EAD\left(c.g.c\right)\\ \Rightarrow BE=BD;\widehat{DBA}=\widehat{DEA}\)
Mà \(\widehat{DBA}+\widehat{DBI}=180^0;\widehat{DEA}+\widehat{DEC}=180^0\)
\(\Rightarrow\widehat{DBI}=\widehat{DEC}\)
Mà \(BD=DC\left(cm.trên\right);\widehat{BDI}=\widehat{CDE}\left(đđ\right)\)
\(\Rightarrow\Delta BID=\Delta ECD\left(g.c.g\right)\\ \Rightarrow BI=EC\\ \Rightarrow BI+AB=EC+AE\\ \Rightarrow AI=AC\)