Cho hình chữnhật ABCD (AB>AD). Gọi M là trung điểm của AB, N làtrung điểm của CD. AC và BD cắt nhau ở K.
a) Tứ giác AMCN là hình gì? Vì sao?
b) Gọi O là trung điểm của MD. Chứng minh rằng A, O, N thẳng hàng
c) Gọi I là trung điểm của MC. Chứng minh rằng: O và I đối xứng với nhau qua MN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
b: ABCDlà hình bình hành
nên AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm của AC
AMCN là hình bình hành
nên AC cắt MN tại trung điểm của mỗi đường
=>M đối xứng N qua O
Bài 1:
a: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
b: Ta có: AD⊥AC
mà AD//BC
nên BC⊥CA
=>ΔCBA vuông tại C
mà CM là đường trung tuyến
nên CM=MA
=>ΔMCA cân tại M
=>\(\widehat{MAC}=\widehat{MCA}\)
mà \(\widehat{MAC}=\widehat{DCA}\)
nên \(\widehat{MCA}=\widehat{DCA}\)
hay CA là tia phân giác của góc MCD
a, Vì O là trung điểm EF
MN qua O //AB//CD
=>M là trung điểm AD, N là TD BC
Bài 1:
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)
a) Trong tứ giác DEBF có:
Hai đường chéo BD và EF cắt nhau tại trung điểm O
Các cạnh đối BE và DF bằng nhau
\(\Rightarrow\) Tứ giác DEBF là hình bình hành.
b) Gọi O là giao điểm hai đường chéo của hình bình hành ABCD, ta có O là trung điểm của BD.
Theo câu a), DEBF là hình bình hành nên trung điểm O của BD cũng là trung điểm của EF.
Vậy AC, BD, EF cùng cắt nhau tại điểm O.
c) \(\Delta ABD\) có các đường trung tuyến AO, DE cắt nhau ở M nên OM = \(\dfrac{1}{3}\) OA.
\(\Delta CBD\) có các đường trung tuyến CO, BF cắt nhau ở N nên ON = \(\dfrac{1}{3}\) OC.
Tứ giác EMFN có các đường chéo cắt nhau tại trung điểm của mỗi đường OM = ON, OE = OF nên là hình bình hành.
a: Xét tứ giác AMCN có
AM//CN
AN//CM
Do đó: AMCN là hình bình hành
a. Vì ABCD là hcn nên \(AB=CD\Rightarrow\dfrac{1}{2}AB=\dfrac{1}{2}CD\Rightarrow AM=CN=BM=DN\)
Mà ABCD là hcn nên AB//CD hay AM//CN
Vậy AMCN là hbh
b. Vì AM=DN và AM//DN(AB//CD) và \(\widehat{MAD}=90^0\) nên AMND là hcn
Mà O là trung điểm MD nên O là trung điểm AN
Vậy A,O,N thẳng hàng
c. Vì BM=CN và BM//CN(AB//CD) và \(\widehat{MBC}=90^0\) nên BMNC là hcn
Mà I là trung điểm MC nên I là trung điểm BN hay MC giao BN tại I
Mà BMNC là hcn nên \(BN=MN\Rightarrow MI=IN\Rightarrow I\in\) trung trực MN
Mà AMND là hcn nên \(AN=MD\Rightarrow OM=ON\Rightarrow O\in\) trung trực MN
Vậy OI là trung trực MN hay O đx I qua MN