K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2016

khó quá !tick nhé mèo Linh

23 tháng 1 2016

ko hiểu nhưng chắc là 69

6 tháng 10 2019

Mình chứng minh: 

\(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\)

tương tự như link: Câu hỏi của Cỏ dại - Toán lớp 8 - Học toán với OnlineMath

Ta có:  \(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\) (1 )

( => )

Cho  \(a^3+b^3+c^3⋮6\)

 (1) => \(a+b+c⋮6\)

( <= ) 

Cho:  \(a+b+c⋮6\)  

(1) => \(a^3+b^3+c^3⋮6\)

Vậy \(a^3+b^3+c^3⋮6\)<=> \(a+b+c⋮6\)

30 tháng 6 2016

a) A = 18x + 17y = 19x + 19y - (x + 2y) = 19(x + y) - (x + 2y) = 19(x + y) - B

Vậy A chia hết cho 19 khi và chỉ khi B chia hết cho 19.

b) Tương tự, M = 3a - b = 5a - 5b - 2a + 4b = 5(a - b) - 2(a - 2b)

2 không chia hết cho 5 nên M chia hết cho 5 khi và chỉ khi  a - 2b chia hết cho 5.

c) Tương tự: P = 3x2 - 10y = 13x2  - 10x2 - 10y = 13x2 - 10(x2 + y)

10 không chia hết cho 13 nên P chia hết cho 13 khi và chỉ khi x2 + y chia hết cho 13.

30 tháng 6 2016

b,Hướng dẫn: Xét A+b or A-B or mA+nB or mA-nB

NM
8 tháng 1 2021

đầu tiên ta chứng minh \(n^3+n\)chia hết cho 6 với mọi số nguyên n.

ta có : \(n^3+n=n\left(n-1\right)\left(n+1\right)\)là tích của ba số nguyên liên tiếp nên chia hết cho 6.

áp dụng ta sẽ có

chiều thuận : \(a^3+b^3+c^3\)chia hết cho 6

áp dụng điều trên ta có \(a^3+b^3+c^3+a+b+c=\left(a^3+a\right)+\left(b^3+b\right)+\left(c^3+c\right)\) cũng chia hết cho 6

nên \(a+b+c\) chia hết cho 6.

chiều đảo: \(a+b+c\)chia hết cho 6

áp dụng điều trên ta có \(a^3+b^3+c^3+a+b+c=\left(a^3+a\right)+\left(b^3+b\right)+\left(c^3+c\right)\) cũng chia hết cho 6

nên \(a^3+b^3+c^3\) chia hết cho 6.

vậy ta có đpcm

16 tháng 3 2016

\(S=a^{2015}+b^{2015}+c^{2015}-\left(a+b+c\right)=a\left(a^{2014}-1\right)+b\left(b^{2014}-1\right)+c\left(c^{2014}-1\right)\)

Ta có : \(a\left(a^{2014}-1\right)=a\left(a^{1007}-1\right)\left(a^{1007}+1\right)\) Bạn tự CM chia hết cho 6

=> S chia hết cho 6 

=> dpcm

13 tháng 7 2018

Thiếu điều kiện a,b,c thuộc Z

Ta có: \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)\) là tích 3 số nguyên liên tiếp nên (a-1)a(a+1) chia hết cho 6

CM tương tự ta cũng có: \(b^3-b⋮6;c^3-c⋮6\)

\(\Rightarrow\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\)

-Nếu \(a^3+b^3+c^3⋮6\Rightarrow a+b+c⋮6\)

-Nếu \(a+b+c⋮6\Rightarrow a^3+b^3+c^3⋮6\)

=>đpcm