cho tam giác ABC cân tại A.Có góc ở đáy bằng 80 độ. trên AB lấy điểm D sao cho AD=BC.Tính góc ACD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy M trong ΔABC sao cho ΔMBC đều
=>góc MBC=góc MCB=góc ACB-góc MCB=20 độ
Ta có:AB=AC
MB=MC
DO đó: AM là trung trực của BC
mà ΔBAC cân tại A
nên AM là phân giác của góc BAC
=>góc BAM=góc CAM=20/2=10 độ
=>góc AMC=150 độ
Xét ΔCMA và ΔADC có
CM=AD(=BC)
góc MCA=góc DAC
AC chung
Do đó: ΔCMA=ΔADC
=>góc ADC=góc CMA=150 độ
=>góc BDC=30 độ
Lấy M trong ΔABC sao cho ΔMBC đều
=>góc MBC=góc MCB=góc ACB-góc MCB=20 độ
Ta có:AB=AC
MB=MC
DO đó: AM là trung trực của BC
mà ΔBAC cân tại A
nên AM là phân giác của góc BAC
=>góc BAM=góc CAM=20/2=10 độ
=>góc AMC=150 độ
Xét ΔCMA và ΔADC có
CM=AD(=BC)
góc MCA=góc DAC
AC chung
Do đó: ΔCMA=ΔADC
=>góc ADC=góc CMA=150 độ
=>góc BDC=30 độ
Lấy M trong ΔABC sao cho ΔMBC đều
=>góc MBC=góc MCB=góc ACB-góc MCB=20 độ
Ta có:AB=AC
MB=MC
DO đó: AM là trung trực của BC
mà ΔBAC cân tại A
nên AM là phân giác của góc BAC
=>góc BAM=góc CAM=20/2=10 độ
=>góc AMC=150 độ
Xét ΔCMA và ΔADC có
CM=AD(=BC)
góc MCA=góc DAC
AC chung
Do đó: ΔCMA=ΔADC
=>góc ADC=góc CMA=150 độ
=>góc BDC=30 độ
a: Ta có: ΔOBE cân tại O
mà OD là trung tuyến
nên OD vuông góc với BE và OD là phân giác của góc BOE
b: Xét ΔDEB có
DN vừa là đường cao, vừa là trung tuyến
nên ΔDEB cân tại D
c: Xét ΔDBO và ΔDEO có
DB=DE
BO=EO
DO chung
Do đo: ΔDBO=ΔDEO
=>góc DEO=90 độ
=>DE là tiếp tuyến của (O)
d: Xét (O) có
ΔAEB nội tiếp
AB là đường kính
Do đo: ΔAEB vuông tại E
Xét ΔAEB có AO/AB=AM/AE
nên OM//EB và OM=EB/2
=>OM//EN và OM=EN
=>EMON là hình bình hành
mà góc MEN=90 độ
nên EMON là hình chữ nhật
a: Ta có: ΔOBE cân tại O
mà OD là trung tuyến
nên OD vuông góc với BE và OD là phân giác của góc BOE
b: Xét ΔDEB có
DN vừa là đường cao, vừa là trung tuyến
nên ΔDEB cân tại D
c: Xét ΔDBO và ΔDEO có
DB=DE
BO=EO
DO chung
Do đo: ΔDBO=ΔDEO
=>góc DEO=90 độ
=>DE là tiếp tuyến của (O)
d: Xét (O) có
ΔAEB nội tiếp
AB là đường kính
Do đo: ΔAEB vuông tại E
Xét ΔAEB có AO/AB=AM/AE
nên OM//EB và OM=EB/2
=>OM//EN và OM=EN
=>EMON là hình bình hành
mà góc MEN=90 độ
nên EMON là hình chữ nhật
a: Ta có: ΔOBE cân tại O
mà OD là trung tuyến
nên OD vuông góc với BE và OD là phân giác của góc BOE
b: Xét ΔDEB có
DN vừa là đường cao, vừa là trung tuyến
nên ΔDEB cân tại D
c: Xét ΔDBO và ΔDEO có
DB=DE
BO=EO
DO chung
Do đo: ΔDBO=ΔDEO
=>góc DEO=90 độ
=>DE là tiếp tuyến của (O)
d: Xét (O) có
ΔAEB nội tiếp
AB là đường kính
Do đo: ΔAEB vuông tại E
Xét ΔAEB có AO/AB=AM/AE
nên OM//EB và OM=EB/2
=>OM//EN và OM=EN
=>EMON là hình bình hành
mà góc MEN=90 độ
nên EMON là hình chữ nhật
Lấy M trong ΔABC sao cho ΔMBC đều
=>góc MBC=góc MCB=góc ACB-góc MCB=20 độ
Ta có:AB=AC
MB=MC
DO đó: AM là trung trực của BC
mà ΔBAC cân tại A
nên AM là phân giác của góc BAC
=>góc BAM=góc CAM=20/2=10 độ
=>góc AMC=150 độ
Xét ΔCMA và ΔADC có
CM=AD(=BC)
góc MCA=góc DAC
AC chung
Do đó: ΔCMA=ΔADC
=>góc ADC=góc CMA=150 độ
=>góc BDC=30 độ
Trong tam giác ABC lấy điểm M sao cho tam giác BMC đều
=> BM=CM => M thuộc trung trực cua BC
Lại có : AB=AC(ABC can tai A)
=> A thuộc trung trực cua BC
Do đó : AM là trung trực của BC
=> AM là phân giác góc BAC
=> góc MAB = góc MAC = góc BAC /2 = 20 độ/2=10 độ
tam giac ABC can tai A
=> goc CBA = goc BCA = (180 - goc BAC)/2= (180 - 20)/2 = 80 độ
lai co : goc MCA = goc ACB - goc MCB
goc MCB = 60 độ (Tg BCM đều)
Suy ra : goc MCA = 20 độ
Xet tg CMA va tg ADC co:
AC chung
CM=DA (cung bang BC)
goc MCA = goc DAC (= 20 độ)
=> tg CMA = tg ADC ( c.g.c)
=> goc CDA = goc CMA = 150 độ
Mat khac : goc CDA + goc BDC = 180 độ (2 goc ke bu)
Suy ra : goc BDC = 30 độ
Trong tam giác ABC lấy điểm M sao cho tam giác BMC đều.
=> BM = CM => M thuộc trung trực của BC
Lại có: AB = AC (ABC cân tại A)
=> A thuộc trung trực của BC
Do đó: AM là trung trực của BC
=> AM là phân giác góc BAC
=> Góc MAB = góc MAC = góc BAC /2 = 20 độ/2 = 10 độ
Tam giác ABC cân tại A
=> Góc CBA = góc BCA = (180 - góc BAC)/2 = (180 - 20)/2 = 80 độ
Lại có: Góc MCA = góc ACB - góc MCB
Góc MCB = 60 độ (Tg BCM đều)
Suy ra: góc MCA = 20 độ
Xét tg CMA và tg ADC có:
AC chung
CM = DA (cũng bằng BC)
Góc MCA = góc DAC (= 20 độ)
=> tg CMA = tg ADC ( c.g.c)
=> Góc CDA = góc CMA = 150 độ
Mặt khác: Góc CDA + góc BDC = 180 độ (2 góc kê bù)
Suy ra: góc BDC = 30 độ
Lấy M trong ΔABC sao cho ΔMBC đều
=>góc MBC=góc MCB=góc ACB-góc MCB=20 độ
Ta có:AB=AC
MB=MC
DO đó: AM là trung trực của BC
mà ΔBAC cân tại A
nên AM là phân giác của góc BAC
=>góc BAM=góc CAM=20/2=10 độ
=>góc AMC=150 độ
Xét ΔCMA và ΔADC có
CM=AD(=BC)
góc MCA=góc DAC
AC chung
Do đó: ΔCMA=ΔADC
=>góc ADC=góc CMA=150 độ
=>góc BDC=30 độ
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Trong tam giac ABC lay diem M sao cho tam giac BMC deu
=> BM=CM => M thuộc trung trực cua BC
Lại có : AB=AC(ABC can tai A)
=> A thuoc trung truc cua BC
Do đó : AM la trung truc cua BC
=> AM la phan giac goc BAC
=> goc MAB = goc MAC = goc BAC /2 = 20 độ/2=10 độ
tam giac ABC can tai A
=> goc CBA = goc BCA = (180 - goc BAC)/2= (180 - 20)/2 = 80 độ
lai co : goc MCA = goc ACB - goc MCB
goc MCB = 60 độ (Tg BCM đều)
Suy ra : goc MCA = 20 độ
Xet tg CMA va tg ADC co:
AC chung
CM=DA (cung bang BC)
goc MCA = goc DAC (= 20 độ)
=> tg CMA = tg ADC ( c.g.c)
=> goc CDA = goc CMA = 150 độ
Mat khac : goc CDA + goc BDC = 180 độ (2 goc ke bu)
suy ra : goc BDC = 30 độ
Lấy M trong ΔABC sao cho ΔMBC đều
=>góc MBC=góc MCB=góc ACB-góc MCB=20 độ
Ta có:AB=AC
MB=MC
DO đó: AM là trung trực của BC
mà ΔBAC cân tại A
nên AM là phân giác của góc BAC
=>góc BAM=góc CAM=20/2=10 độ
=>góc AMC=150 độ
Xét ΔCMA và ΔADC có
CM=AD(=BC)
góc MCA=góc DAC
AC chung
Do đó: ΔCMA=ΔADC
=>góc ADC=góc CMA=150 độ
=>góc BDC=30 độ
Bạn NGUYỄN LÊ PHƯỚC THỊNH sai rồi. Tính góc ACD mà bạn tính góc BCD