Cho hình chóp S.ABCD có đáy ABCD là hình vuông. Biết hai mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt đáy. Hình chóp này có bao nhiêu mặt phẳng đối xứng
A. 4
B. 1
C. 0
D. 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Vì S A ⊥ ( A B C D ) B C ⊥ A B ⇒ B C ⊥ ( S A B ) ⇒ S B C ; A B C D ^ = S B A ^
Tam giác SAB vuông tại A, có tan S B A ^ = S A A B ⇒ S A = 2 a . tan 30 ° = 2 a 3
Thể tích khối chóp S.ABCD là
V
=
1
3
S
A
.
S
A
B
C
D
=
1
3
2
a
3
4
a
2
=
8
a
3
2
9
Vậy tỉ số
3
V
a
3
=
24
a
3
3
9
:
a
3
=
8
3
3
Chọn đáp án C
Ta có
⇒ A C là hình chiếu của SC trên mặt phẳng (ABCD)
Lại có ABCD là hình vuông cạnh a nên A C = a 2
Tam giác SAC vuông tại A nên S A = A C . tan S C A ⏜ = a 6
Vậy thể tích khối chóp S.ABCD là V A B C D = a 3 6 3 (đvtt).
Đáp án B
Có duy nhất mặt phẳng (SAC)