Biết luôn có hai số a, b để F ( x ) = a x + b x + 4 ( 4 a - b ≠ 0 ) là nguyên hàm của hàm số f(x) và thỏa mãn 2 f 2 ( x ) = ( F ( x ) - 1 ) f ' ( x ) . Khẳng định nào dưới đây đúng và đầy đủ nhất?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Vì F(x) là nguyên hàm của hàm số ⇒ f x = F ' x
Ta có
Khi đó
Phương trình (*) có nghiệm khi và chỉ khi a = 1 , b ∈ ℝ \ 4 .
- Vì F(x) và G(x) đều là nguyên hàm của f(x) nên tồn tại một hằng số C sao cho: F(x) = G(x) + C
- Khi đó F(b) – F(a) = G(b) + C – G(a) – C = G(b) – G(a).
Đáp án A
Phương pháp:
Dựa vào khái niệm cực trị và các kiến thức liên quan.
Cách giải:
(1) chỉ là điều kiện cần mà không là điều kiện đủ.
VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.
(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.
(3) hiển nhiên sai.
Vậy (1), (2), (3): sai; (4): đúng
F(x) là một nguyên hàm của hàm số f(x) => F'(x) = f(x)
Đồng nhất ta được
Chọn B.
Đáp án B
Ta có F x = x 2 + a x + b e - x ⇒ F ' x = - x 2 + 2 - a x + a - b e - x
mà f x = F ' x suy ra - x 2 + 2 - a x + a - b = - x 2 + 3 x + 6 ⇒ 2 - a = 3 a - b = 6 ⇔ a = - 1 b = - 7
Đáp án C