Cho khối chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = a 3 , BC = a . Tam giác SAC đều và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách h từ A đến mặt phẳng (SBC).
A. h = a 15 5
B. h = a 5 3
C. h = 2 a 5 3
D. h = 2 a 15 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Gọi H là trung điểm của BC, suy ra .
Gọi K là trung điểm AC
Gọi H là trung điểm của BC, suy ra
Gọi K là trung điểm AC suy ra
Chọn C.
Đáp án A.
Theo giả thiết ta có SO ⊥ (ABC). Gọi D là điểm đối xưng với B qua O
=> ABCD là hình vuông => AB//CD
=> d(AB;SC) = d(AB;(SCD)) = d(E;(SCD)) = 2d(O;(SCD))(Với E, F lần lượt là trung điểm của AB và CD).
Áp dung tính chất tứ diện vuông cho tứ diện OSCD ta có:
Đáp án đúng : A