Tìm số hạng không chứa x trong khai triển thành đa thức của x x + 1 x 4 n , với x > 0 nếu biết rằng C n 2 - C n 1 = 44
A. 165
B. 238
C. 485
D. 525
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Ta có C n 2 - C n 1 = 44 ⇔ n ! n - 2 ! . 2 ! - n = 44 ⇔ n n - 1 2 - n = 44 ⇒ n = 11
Khi đó x x + 1 x 4 n = x x + 1 x 4 11 = ∑ k = 0 11 C 11 k . ( x x ) 11 - k . 1 x 4 k = ∑ k = 0 11 C 11 k . ( x ) 3 2 ( 11 - k ) - 4 k .
Đáp án D
Ta có
x 3 + 1 x 4 7 = x 1 3 + x − 1 4 7 = k = 0 7 C 7 k x 1 3 7 − k x − 1 4 k = k = 0 7 C 7 k x 7 3 − 7 k 12
Số hạng không chứa x tương ứng với số hạng chứa k thỏa mãn
7 3 − 7 k 12 = 0 ⇔ k = 4 .
Vậy số hạng không chứa x là C 7 4 .
Ta có:
\(2A_n^2=C_{n-1}^2+C_{n-1}^3\) \(\left(n\ge4\right)\)
\(\Rightarrow2\cdot\dfrac{n!}{\left(n-2\right)!}=\dfrac{\left(n-1\right)!}{2!\left(n-1-2\right)!}+\dfrac{\left(n-1\right)!}{3!\left(n-1-3\right)!}\)
\(\Rightarrow2\cdot n\left(n-1\right)=\dfrac{\left(n-1\right)\left(n-2\right)}{4}+\dfrac{\left(n-1\right)\left(n-2\right)\left(n-3\right)}{6}\)
\(\Rightarrow2n=\dfrac{n-2}{4}+\dfrac{\left(n-2\right)\left(n-3\right)}{6}\)
\(\Rightarrow n=14\) hoặc \(n=0\left(loại\right)\)
Với n=14 ta có khai triển:
\(\left(x^2-\dfrac{1}{x^2}\right)^{14}=\sum\limits^{14}_{k=0}\cdot C_{14}^k\cdot\left(x^2\right)^{14-k}\cdot\left(\dfrac{1}{x^2}\right)^k\)
\(=C_{14}^k\cdot x^{28-4k}\)
Số hạng không chứa x: \(\Rightarrow28-4k=0\Rightarrow k=7\)
Vậy số hạng không chứa x trong khai triển là:
\(C_{14}^7\cdot x^{28-4\cdot7}=C_{14}^7=3432\)