tìm số tự nhiên x có chữ số tận cùng bằng 2, biết rằng các tích x,2x,3x đều là các số có ba chữ số và chín chữ số của 3 số đó đều khác nhau và khác 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta biết rằng một số và tổng các chữ số của nó có cùng số dư khi chia cho 9. Tổng các chữ số của x ; của 2x; của 3x cộng lại là 1 + 2+ ……+ 9 = 45, chia hết cho 9, do đó tổng x + 2x + 3x cũng chia hết cho 9, tức là 6x chia hết cho 9 => x chia hết cho 3
Do x có tận cùng bằng 2 nên 2x tận cùng bằng 4 và 3x tận cùng bằng 6
Gọi a và b là các chữ số hàng trăm, hàng chục của 3x thì a,b∈{1;3;5;7;8;9} (Trừ các số 2, 4, 6) mặt khác x chia hết cho3 nên 3x chia hết cho 9.
Tức là: abc chia hết cho 9 do đó a +b + 6 chia hết cho 9 chú ý : 4 ≤a +b ≤ 17.
Nên a + b + 6 = 18 => a + b = 12 = 5 + 7 = 3 + 9
Xét 4 trường hợp
3x = 576 => x = 192, 2x = 384 (đúng)
3x = 756 => x = 252, loại vì 3x và x trùng chữ số 5
3x = 396 => x = 132 loại vì 3x và x trùng chữ số 3
3x = 936 => x = 312 loại vì 3x và x trùng chữ số 3
mình tính được x = 192
2x = 384
3x = 576
chỉ cách làm nghe
Ta biết rằng một số và tổng các chữ số của nó có cùng số dư khi chia cho 9. Tổng các chữ số của x ; của 2x; của 3x cộng lại là 1 + 2+ ……+ 9 = 45, chia hết cho 9, do đó tổng x + 2x + 3x cũng chia hết cho 9, tức là 6x chia hết cho 9 => x chia hết cho 3
Do x có tận cùng bằng 2 nên 2x tận cùng bằng 4 và 3x tận cùng bằng 6
Gọi a và b là các chữ số hàng trăm, hàng chục của 3x thì \(a,b\in\left\{1;3;5;7;8;9\right\}\) (Trừ các số 2, 4, 6) mặt khác x chia hết cho3 nên 3x chia hết cho 9.
Tức là: abc chia hết cho 9 do đó a +b + 6 chia hết cho 9 chú ý : 4 \(\le\)a +b \(\le\) 17.
Nên a + b + 6 = 18 => a + b = 12 = 5 + 7 = 3 + 9
Xét 4 trường hợp
3x = 576 => x = 192, 2x = 384 (đúng)
3x = 756 => x = 252, loại vì 3x và x trùng chữ số 5
3x = 396 => x = 132 loại vì 3x và x trùng chữ số 3
3x = 936 => x = 312 loại vì 3x và x trùng chữ số 3
tick dúng nha
giang ho dai ka coppy trong 28 đề thi ssg k sai 1 chữ
Câu hỏi của Hà Phương Trần Thị - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo bài làm tại link này nhé!