Chứng minh:\(\frac{n\left(n+1\right)}{2}\) và \(2n+1\) là số nguyên tố cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d thuộc ƯC(\(\frac{n\left(n+1\right)}{2}\),2n+1) thì n(n+1) chia hết cho d và 2n+1 chia hết cho d.
=>n(2n+1) - n(n+1)chia hết cho d
<=>2\(n^2\)+n - \(n^2\)-n chia hết cho d
<=> \(n^2\)chia hết cho d
Từ n(n+1) chia hết cho d và \(n^2\) chia hết cho d => n chia hết cho d
Ta lại có 2n+1 chia hết cho d
=> 1 chia hết cho d => d=1
Vậy 2 số đó là 2 số nguyen tố
\(A=\frac{n\left(n+1\right)}{2};B=2n+1\\ \)
gọi d là ước lớn nhất của A và B
ta có
\(8A-B^2=4n^2+4n-\left(4n^2+4n+1\right)=1\)
Vậy \(d=+-1\) => A,B có ước lớn nhất là 1 =>dpcm
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
Lời giải:
Gọi $d$ là ƯCLN của $(2n+1, 2n-1)$
Ta có: $2n+1\vdots d; 2n-1\vdots d$
$\Rightarrow (2n+1)-(2n-1)\vdots d$ hay $2\vdots d$
$\Rightarrow d=\left\{1;2\right\}$
Nếu $d=2$ thfi $2n+1\vdots 2$ (vô lý vì $2n+1$ lẻ)
$\Rightarrow d=1$
Tức là $2n-1, 2n+1$ nguyên tố cùng nhau.
Vì \(n^2+n\) là số chẵn
và 2n+1 là số lẻ
nên \(n^2+n\) và 2n+1 là hai số nguyên tố cùng nhau
Gọi ước chung lớn nhất của 2n + 1 và n + 1 là d ta có:
\(\left\{{}\begin{matrix}2n+1⋮d\\n+1⋮d\end{matrix}\right.\) ⇒\(\left\{{}\begin{matrix}2n+1⋮d\\\left(n+1\right).2⋮d\end{matrix}\right.\)⇒ \(\left\{{}\begin{matrix}2n+1⋮d\\2n+2⋮d\end{matrix}\right.\) ⇒ 2n +2 - 2n - 1 ⋮ d
⇒ 1 ⋮ d ⇒ d = 1
Vậy 2n + 1 và n + 1 là hai số nguyên tố cùng nhau (đpcm)
Gọi d = ƯCLN(2n + 1; n + 1)
⇒ (2n + 1) ⋮ d và (n + 1) ⋮ d
*) (n + 1) ⋮ d
⇒ 2(n + 1) ⋮ d
⇒ (2n + 2) ⋮ d
Mà (2n + 1) ⋮ d (cmt)
⇒ (2n + 2 - 2n - 1) ⋮ d
⇒ 1 ⋮ d
⇒ d = 1
Vậy 2n + 1 và n + 1 là hai số nguyên tố cùng nhau