K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2018

Tập xác định: D = R.

* y ' = - m x + 1 x 2 + 1 x 2 + 1 .

* Hàm số đồng biến trong khoảng 0 ; + ∞  khi và chỉ khi

y '  ≥ 0, ∀ x ∈ 0 ; + ∞ ⇔ - m x + 1 ≥ 0 .

- Nếu m = 0 thì 1 ≥ 0 luôn đúng.

- Nếu m > 0 thì -mx+1 ≥ 0 nên x ≤ 1 m  (loại).

- Nếu m < 0 thì x ≥ 1 m . Khi đó  1 m ≤ 0 nên m < 0. Tóm lại m0

Đáp án A

22 tháng 11 2023

loading...  loading...  loading...  

22 tháng 11 2023

tròi oi a viết chữ xấu wá đi à, đọc bài của a mà đau mắt wá

2 tháng 4 2019

Chọn B.

Tập xác định: 

Hàm số đồng biến trên khoảng (0;+)

22 tháng 10 2017

Đáp án là B

NV
22 tháng 6 2021

1.

\(y'=m-3cos3x\)

Hàm đồng biến trên R khi và chỉ khi \(m-3cos3x\ge0\) ; \(\forall x\)

\(\Leftrightarrow m\ge3cos3x\) ; \(\forall x\)

\(\Leftrightarrow m\ge\max\limits_{x\in R}\left(3cos3x\right)\)

\(\Leftrightarrow m\ge3\)

NV
22 tháng 6 2021

2.

\(y'=1-m.sinx\)

Hàm đồng biến trên R khi và chỉ khi:

\(1-m.sinx\ge0\) ; \(\forall x\)

\(\Leftrightarrow1\ge m.sinx\) ; \(\forall x\)

- Với \(m=0\) thỏa mãn

- Với \(m< 0\Rightarrow\dfrac{1}{m}\le sinx\Leftrightarrow\dfrac{1}{m}\le\min\limits_R\left(sinx\right)=-1\)

\(\Rightarrow m\ge-1\)

- Với \(m>0\Rightarrow\dfrac{1}{m}\ge sinx\Leftrightarrow\dfrac{1}{m}\ge\max\limits_R\left(sinx\right)=1\)

\(\Rightarrow m\le1\)

Kết hợp lại ta được: \(-1\le m\le1\)

NV
22 tháng 6 2021

\(y=\dfrac{x^2-m^2+2m+1}{x-m}\) đúng không nhỉ?

\(y'=\dfrac{x^2-2mx+m^2-2m-1}{\left(x-m\right)^2}\)

Hàm đồng biến trên các khoảng xác định khi và chỉ khi:

\(x^2-2mx+m^2-2m-1\ge0\) ; \(\forall x\)

\(\Leftrightarrow\Delta'=m^2-\left(m^2-2m-1\right)\le0\)

\(\Leftrightarrow m\le-\dfrac{1}{2}\)

NV
11 tháng 7 2021

\(\Leftrightarrow\) Với mọi \(x>1\) thì:

\(y'=\dfrac{x+m}{\sqrt{x^2+2mx+m^2+1}}\ge0\)

\(\Leftrightarrow x\ge-m\) (\(\forall x>1\))

\(\Leftrightarrow-m\le1\)

\(\Leftrightarrow m\ge-1\)

11 tháng 7 2021

Dạ m có thể =-1 ạ? em thấy trong đáp án không có đáp án nào là có dấu bằng cả

24 tháng 8 2019

12 tháng 2 2017

Đáp án đúng : C

NV
29 tháng 7 2021

3.

\(y'=\dfrac{3m-1}{\left(x+3m\right)^2}\)

Hàm nghịch biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-1< 0\\-3m\le6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{3}\\m\ge-2\end{matrix}\right.\)

\(\Rightarrow-2\le m< \dfrac{1}{3}\Rightarrow m=\left\{-2;-1;0\right\}\)

4.

\(y'=\dfrac{3m-2}{\left(x+3m\right)^2}\)

Hàm đồng biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-2>0\\-3m\ge-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m\le2\end{matrix}\right.\)

\(\Rightarrow\dfrac{2}{3}< m\le2\Rightarrow m=\left\{1;2\right\}\)