K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2019

10 tháng 11 2018

11 tháng 10 2018

Đáp án là A 

Ta có: Số cách lấy 4 điểm phân biệt bất kì từ 12 điểm phân biệt trên đường tròn tâm O sẽ là số tứ giác nội tiếp đường tròn tâm O được tạo thành. Vậy có C 12 4  tứ giác nội tiếp đường tròn tâm O được tạo thành.

19 tháng 9 2017

Đáp án là B

Mỗi tứ giác nội tiếp tạo thành từ các điểm đã cho là một cách chọn 4 điểm bất kỳ trong 12 điểm Số tứ giác nội tiếp là:  C 12 4

a: góc ONM+góc OPM=180 độ

=>ONMP nội tiếp

b: ONMP nội tiếp

=>góc NMO=góc NPO

c: Xét ΔMNA và ΔMBN có

góc MNA=góc MBN

góc NMA chung

=>ΔMNA đồng dạng với ΔMBN

=>MN/MB=MA/MN

=>MN^2=MB*MA

a: góc MNO+góc MPO=90+90=180 độ

=>MNOP nội tiếp

b: MNOP nội tiếp

=>góc NMO=góc NPO

loading...  loading...  

a: góc PAO+góc PHO=180 độ

=>PAOH nội tiếp

b: Đề sai rồi bạn

 

AH
Akai Haruma
Giáo viên
12 tháng 7 2021

Lời giải:

1.

$\widehat{MDC}=90^0$ (góc nt chắn nửa đường tròn)

$\Leftrightarrow \widehat{BDC}=90^0$

Tứ giác $ABCD$ có $\widehat{BAC}=\widehat{BDC}=90^0$ và cùng nhìn cạnh $BC$ nên là tgnt.

Do $ABCD$ nội tiếp nên $\widehat{BCA}=\widehat{BDA}$

Mà $\widehat{BDA}=\widehat{MCS}$ (do $MDSC$ nội tiếp)

$\Rightarrow \widehat{BCA}=\widehat{MCS}$

$\Rightarrow CA$ là phân giác $\widehat{BCS}$

2.

Gọi $T$ là giao điểm của $BA$ và $EM$

Xét tam giác $BTC$ có $TE\perp BC$ (do $\widehat{MEC}=90^0$) và $CA\perp BT$ và $TE, CA$ giao nhau tại $M$ nên $M$ là trực tâm tam giác $BTC$

$\Rightarrow BM\perp TC$.

Mà $BM\perp DC$ nên $TC\parallel DC$ hay $T,D,C$ thẳng hàng

Do đó $BA, EM, DC$ đồng quy tại $T$

3.

Vì $ABCD$ nt nên $\widehat{MAD}=\widehat{CAD}=\widehat{DBC}=\widehat{MBE}$

Dễ cm $BAME$ nội tiếp cho $\widehat{A}+\widehat{E}=90^0+90^0=180^0$ nên $\widehat{MBE}=\widehat{EAM}$

Do đó: $\widehat{MAD}=\widehat{EAM}$ nên $AM$ là tia phân giác $\widehat{EAM}(*)$

Mặt khác:

Cũng do $MECD,ABCD$ nội tiếp nên:

$\widehat{ADM}=\widehat{ADB}=\widehat{ACB}=\widehat{MCE}=\widehat{MDE}$

$\Rightarrow DM$ là tia phân giác $\widehat{ADE}(**)$

Từ $(*); (**)\Rightarrow M$ là tâm đường tròn nội tiếp $ADE$.

 

 

 

 

AH
Akai Haruma
Giáo viên
12 tháng 7 2021

Hình vẽ: