Cho ΔABC vuông tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC.
a) Chứng minh: AH = DE.
b) Chứng minh: ∠ADE = ∠BHD
c) Gọi M là trung điểm của BC. Chứng minh: DE = AM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\) nên ADHE là hcn
Do đó AH=DE
a, Xét tứ giác ADHE có :
^A = ^ADH = ^HEA = 900
Vậy tứ giác ADHE là hcn
Vậy AH = DE ( 2 đường chéo bằng nhau )
b, Xét tam giác AEH và tam giác AHC có :
^AEH = ^AHC = 900
^A _ chung
Vậy tam giác AEH ~ tam giác AHC ( g.g )
=> AH/AC = AE/AH => AH^2 = AE.AC (1)
tương tự với tam giác ADH ~ tam giác AHB (g.g)
=> AD/AH = AH/AB => AH^2=AD.AB (2)
Từ (1) ; (2) suy ra AE.AC = AD.AB
c, Xét tam giác ABH và tam giác CAH
^AHB = ^CHA = 900
^ABH = ^CAH ( cùng phụ ^BAH )
Vậy tam giác ABH ~ tam giác CAH (g.g)
=> AH/CH = BH/AH => AH^2 = BH.CH
=> CH = AH^2/BH = 144/9 = 16
=> BC = BH + CH = 25 cm
Diện tích tam giác ABC là : SABC = 1/2 . AH . BC
= 1/2 . 12 . 25 = 150 cm2
a: Xét tứ giác ADHE có
\(\widehat{EAD}=\widehat{AEH}=\widehat{ADH}=90^0\)
Do đó: ADHE là hình chữ nhật
Suy ra: AH=DE
a: Xét tứ giác ADHE có góc ADH=góc AEH=góc DAE=90 độ
nên ADHE là hình chữ nhật
=>DE=AH
=>\(DE^2=BH\cdot CH\)
b: Ta có: ΔABC vuông tại A
mà AM là trung tuyến
nên MA=MC
=>ΔMAC cân tại M
=>góc MAC=góc MCA
Vì ADHE là hình chữ nhật nên góc AED=góc AHD=góc ABC
=>góc AED+góc MAC=90 độ
=>AM vuông góc với DE
c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(DE=AH=\dfrac{AB\cdot AC}{CB}=4.8\left(cm\right)\)
\(\widehat{BHD}=\widehat{HAB}\)
\(\widehat{HAB}=\widehat{ADE}\)
Do đó: \(\widehat{ADE}=\widehat{BHD}\)
a: Xét ΔABH vuông tại H và ΔCAH vuông tại H có
góc HAB=góc HCA
=>ΔABH đồng dạng với ΔCAH
b: ΔAHB vuông tại H có HD là đường cao
nên AD*AB=AH^2
ΔAHC vuông tại H có HE là đường cao
nên AE*AC=AH^2
=>AD*AB=AE*AC=AH^2
Xét tứ giác ADHE có góc ADH=góc AEH=góc EAD=90 độ
nên ADHE là hình chữ nhật
=>góc AED=góc AHD=góc ABC
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MC
=>ΔMAC cân tại M
=>góc MAC=góc MCA
=>góc MAC+góc AED=90 độ
=>AM vuông góc với DE
a: Xét tứ giác AEHD có
\(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)
Do đó: AEHD là hình chữ nhật
Suy ra: AH=DE