Cho tam giác ABC có các góc có số đo nhỏ hơn 90 độ. Vẽ ra phía ngoài tam giác đó các tam giác: ABD vuông cân ở B và ACE vuông cân ở C. Vẽ các đoạn thẳng DI, AH và EK vuông góc với đường thẳng BC. Chứng minh rằng:
a) BI=CK
b) EK=HC
c) BC=DI+EK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hạ đường cao AH.
a) \(\Delta BHA=\Delta DIB\)(Cạnh huyền góc nhọn) \(\Rightarrow BI=AH\)(2 cạnh tương ứng) \(\left(1\right)\)
\(\Delta AHC=\Delta CKE\)(Cạnh huyền góc nhọn) \(\Rightarrow\hept{\begin{cases}AH=CK\left(2\right)\\EK=HC\end{cases}}\)(2 cặp cạnh tương ứng)
Từ (1) và (2) \(\Rightarrow BI=CK\)
b) Ta có: \(BC=BH+HC\). Mà \(DI=BH\)(2 cạnh tương ứng) và \(EK=HC\)(cmt)
\(\Rightarrow BC=DI+EK\)
a, + Kẻ AH⊥BC; H∈BC
+ Xét ΔDIB và ΔBHA ta có
I1ˆ=H1ˆ=90o
B1ˆ=A1ˆ (cùng phụ với B2ˆ)
BD=AB (ΔABD vuông cân ở B)
→ΔDIB=ΔBHA (ch-gn)
→IB=AH (2 cạnh tương ứng) (1)
+ Xét ΔCKE và ΔAHC ta có
H2ˆ=K1ˆ=90o
A1ˆ=C2ˆ (cùng phụ với C1ˆ)
CE=AC (ΔACE vuông cân ở C)
→ΔCKE=ΔAHC (ch-gn)
→CK=AH (2 cạnh tương ứng) (2)
+ Từ (1) và (2) →CK=BI (đpcm)
b, + Ta có ΔDIB=ΔBHA→DI=BH (2 cạnh tương ứng)
+ Ta có ΔCKE=ΔAHC→EK=HC (2 cạnh tương ứng)
+ Ta có BC=BH+CH=DI+EK (đpcm)