K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2017

Đáp án D.

16 tháng 3 2018

Chọn D

Xếp ngẫu nhiên các em học sinh trên thành một hàng ngang có 11! cách. Suy ra n ( Ω ) = 11 !  

Gọi A là thỏa mãn đề bài. Xếp 6 bạn nam có 6! cách

Giữa 6 bạn nam có 5 khoảng trống và thêm hai vị trí ở đầu hàng là 7. Để xếp 5 bạn nữ mà không có hai bạn nữ kề nhau ta chọn 5 trong 7 vị trí này và xếp 5 bạn nữ vào có A 7 5

Suy ra  n ( A ) = 6 ! . A 7 5 ⇒ P ( A ) = 6 ! . A 7 5 11 ! = 1 22

23 tháng 6 2017

Chọn C

Số phần tử của không gian mẫu là 

Gọi A là biến cố "không có hai học sinh nữ nào đứng cạnh nhau".

Mỗi phần tử của A tương ứng với 1 hàng ngang gồm 11 bạn đã cho mà không có hai nữ xếp cạnh nhau. Để xếp được 1 hàng như vậy ta thực hiện liên tiếp hai bước:

Bước 1: Xếp 6 bạn nam thành một hàng ngang, có 6!= 720 cách

Bước 2: Xếp 5 bạn nữ vào 7 vị trí xen giữa hai nam hoặc ngoài cùng (để 2 nữ không cạnh nhau), có  A 7 5 = 2520 cách.

Vậy n(A) =720.2520 = 1814400

Xác suất cần tìm là 

3 tháng 12 2018

Chọn đáp án A

Kí hiệu Nam: l và Nữ: ¡. Ta có

Có 2 trường hợp Nam, nữ ken kẽ nhau và 4 trường hợp hai bạn Nữ ngồi cạnh nhau.

Trường hợp 1. Nam nữ ngồi xen kẽ nhau gồm:

Nam phía trước: l¡l¡l¡l¡l¡.

Nữ phía trước: ¡l¡l¡l¡l¡l.

Trường hợp 2. Hai bạn nữ ngồi cạnh nhau: l¡¡l¡l¡l¡l Hoặc

l¡l¡¡l¡l¡l. Tương tự ta có thêm 2 trường hợp nữa. Các bước xếp như sau:

B1: Xếp 5 bạn nam. B2: Xếp cặp Tự - Trọng. B3: Xếp các bạn nữ còn lại. Khi đó số kết quả xếp cho 2 trường hợp trên như sau:

31 tháng 5 2018

Số phần tử của không gian mẫu n(Ω)=10!

Xếp 10 học sinh trên một hàng ngang sao cho 5 học sinh nam xen kẽ 5 học sinh nữ có 2 cách xếp.

Xét trong 2 cách xếp trên các khả năng Hoàng và Lan đứng liền kề nhau:

Xếp 8 học sinh trên một hàng ngang sao cho 4 học sinh nam xen kẽ 4 học sinh nữ có 2 cách xếp.

Với mỗi cách xếp 8 học sinh trên có 9 khoảng trống tạo ra. Với mỗi khoảng trống trên, xếp Hoàng và Lan vào khoảng trống này để được 5 học sinh nam xen kẽ 5 học sinh nữ có 1 cách xếp.

Suy số cách xếp 5 học sinh nam xen kẽ 5 học sinh nữ mà Hoàng và Lan đứng kề nhau là: 2.9

Vậy số phần tử của A là: n =2–2.9=18432.

Xác suất cần tìm là P(A)=n(A)/n(Ω)=18432/10!=8/1575.

+ Phương án B. Tính sai: P(A)=(2.5!5!-2.4!4!7)/10!=1/175.

+ Phương án C. Tính sai: P(A)=(5!5!-4!4!9)/10!=4/1575.

+ Phương án D. Tính sai: P(A)=(2.5!5!- 2.4!4!18)/10!=1/450.

Đáp án B

19 tháng 7 2017

Đáp án B

– Số phần tử của không gian mẫu  n Ω =10!

* Xếp 10 học sinh trên một hàng ngang sao cho 5 học sinh nam xen kẽ 5 học sinh nữ có 2 cách xếp.

* Xét trong 2 cách xếp trên các khả năng Hoàng và Lan đứng liền kề nhau:

+ Xếp 8 học sinh trên một hàng ngang sao cho 4 học sinh nam xen kẽ 4 học sinh nữ có 2 cách xếp.

+ Với mỗi cách xếp 8 học sinh trên có 9 khoảng trống tạo ra. Với mỗi khoảng trống trên, xếp Hoàng và Lan vào khoảng trống này để được 5 học sinh nam xen kẽ 5 học sinh nữ có 1 cách xếp.

xxxx

Suy số cách xếp 5 học sinh nam xen kẽ 5 học sinh nữ mà Hoàng và Lan đứng kề nhau là: 2.9

Vậy số phần tử của A là:  n =2-2.9=18432.

7 tháng 9 2019

Chọn B

Số phần tử của không gian mẫu là 

Sắp 5 học sinh nam thành một hàng ngang, có 5! cách (tạo ra  khoảng trống).

Chọn 3 khoảng trống trong 6 khoảng trống để xếp 3 nữ, có C 6 3  cách chọn. Khi đó, số cách xếp 3 bạn nữ là  C 6 3 .3! cách.

Vậy xác suất cần tìm là 

23 tháng 6 2016

lại lần nữa:

Để mình làm lại :

Số cách xếp bất kỳ 13 học sinh là: \(\left|\Omega\right|=P_{13}\)
Số cách xếp có ít nhất 2 học sinh nữ cạnh nhau là: \(2.P_{12}\)
Số cách xếp không có 2 học sinh nữ cạnh nhau là:

\(P_{13}-2P_{12}=11P_{12}\)
Goi A là biến cố không có 2 học sinh nữ cạnh nhau
\(\Rightarrow\left|A\right|=11.P_{12}\)
\(\Rightarrow P\left(A\right)=\)\(\frac{\left|A\right|}{\left|\Omega\right|}\)\(=\frac{11}{13}\)

15 tháng 7 2019

Tại sao chỗ xếp ít nhất 2 banj nữ cạnh nhau lại là P12.Nếu đã sắp xếp 2 bạn nữ đứng cạnh nhau rồi thì chỉ còn 11 bạn và sắp xếp theo cách 11! thôi chứ.Là 2!.11!,tại s lại là 2.12!??

9 tháng 10 2018

Đáp án C

Số cách xếp ngẫu nhiên là 10!.

Ta tìm số cách xếp thoả mãn:

Đánh số hàng từ 1 đến 10. Có hai khả năng:

5 nam xếp vị trí lẻ và 5 nữ xếp vị trí chẵn có 5! x 5! =  120 2 .

5 nam xếp vị trí chẵn và 5 nữ xếp vị trí lẻ có 5! x 5! =  120 2 .

Theo quy tắc cộng có 120 2 + 120 2 = 2 × 120 2  cách xếp thoả mãn.

Vậy xác suất cần tính  2 5 ! 2 10 ! = 1 126 .

12 tháng 1 2018

Đáp án đúng : C