Cho hàm số y = f x = e a x - e 3 x 2 x k h i x ≠ 0 1 2 k h i x = 0 . Tìm giá trị của a để hàm số f(x) liên tục tại điểm x = 0.
A. a = 2
B. a = 4
C. a = - 1 4
D. a = - 1 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: f(-2)=4+3=7
f(-1)=2+3=5
f(0)=3
f(1/2)=-1+3=2
f(-1/2)=1+3=4
b: g(-1)=1-1=0
f(0)=0-1=-1
Chọn C
Trên đoạn [ - 1; 1] đồ thị hàm số y= f’( x) nằm phía trên trục hoành.
=> Trên đoạn [ - 1; 1] thì f’( x) > 0.
=> Trên đoạn [ - 1; 1] thì hàm số y= f( x) đồng biến
Chọn A
Phương pháp:
Nếu f ' ( x ) ≥ 0 , ∀ x ∈ a ; b và chỉ bằng 0 tại hữu hạn điểm trên đó thì f(x) đồng biến trên khoảng (a;b).
Nếu f ' ( x ) ≤ 0 , ∀ x ∈ a ; b và chỉ bằng 0 tại hữu hạn điểm trên đó thì f(x) nghịch biến trên khoảng (a;b) Cách giải:
Quan sát đồ thị hàm số y=f’(x) , ta thấy f’(x) >0 =>Hàm số f (x) đồng biến trên
khoảng (-1;1).
=>Mệnh đề ở câu A là sai.
Đáp án B. lim x → 0 e a x - e 3 x 2 x = lim x → 0 e a x - 1 - e 3 x + 1 2 x = lim x → 0 e a x - 1 2 x - lim x → 0 e 3 x - 1 2 x = a - 3 2
Chú ý giới hạn đặc biệt sau: lim u → 0 e u - 1 u = 1 .
lim x → 0 e a x - 1 a x = 1 ⇔ lim x → 0 e a x - 1 2 x = a 2 và lim x → 0 e 3 x - 1 3 x = 1 ⇔ lim x → 0 e 3 x - 1 2 x = 3 2
Do đó lim x → 0 e a x - e 3 x 2 x = lim x → 0 e a x - 1 - e 3 x + 1 2 x = lim x → 0 e a x - 1 2 x - lim x → 0 e 3 x - 1 2 x = a - 3 2
Mà hàm số liên tục tại x = 0 ⇒ lim x → 0 f x = f 0 ⇔ a - 3 2 = 1 2 ⇔ a = 4 .