K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2017

Đáp án C

Hàm số:

y = − x 4 − 2 x 2 − 1 ⇒ y ' = − 4 x 3 − 4 x = 0 ⇔ x = 0

hàm số này chỉ có 1 điểm cực trị và đó là cực đại

7 tháng 11 2019

 

Hình ảnh trên là một phần đồ thị của y trên tập xác định. Ta thấy rằng hàm số đạt cực đại tại x = 2 nhưng không chắc rằng có còn điểm cực đại nào khác trên những khoảng rộng hơn hay không (I) sai, (III) đúng.

Hàm số không xác định tại x = 1 nên không thể đạt cực tiểu tại điểm này =>(II) sai.

Chọn B

20 tháng 12 2017

Đáp án: B.

Vì a < 0 và y' = 0 có ba nghiệm phân biệt nên hàm số y = a x 4  + b x 2  + c có hai cực đại, một cực tiểu.

Ở đây y' = -4 x 3 + 8x; y' = 0 ⇔ -4x( x 2  - 2) = 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

25 tháng 11 2018

Đáp án: B.

Vì a < 0 và y' = 0 có ba nghiệm phân biệt nên hàm số y = a x 4  + b x 2  + c có hai cực đại, một cực tiểu.

Ở đây y' = -4 x 3  + 8x; y' = 0 ⇔ -4x( x 2  - 2) = 0

 

 Giải sách bài tập Toán 12 | Giải sbt Toán 12

8 tháng 12 2017

Đáp án C

NV
30 tháng 6 2021

Đề đúng là \(y=mx^2+2\left(m^2-5\right)x^4+4\) chứ bạn (nghĩa là ko bị nhầm lẫn vị trí \(x^2\) và \(x^4\))

Hàm có đúng 2 điểm cực đại và 1 điểm cực tiểu khi:

\(\left\{{}\begin{matrix}2\left(m^2-5\right)< 0\\2\left(m^2-5\right).m< 0\end{matrix}\right.\)

\(\Leftrightarrow0< m< \sqrt{5}\)

\(\Rightarrow\) có 2 giá trị nguyên của m thỏa mãn

30 tháng 11 2017

Đáp án A

Phương pháp:

Dựa vào khái niệm cực trị và các kiến thức liên quan.

Cách giải:

(1) chỉ là điều kiện cần mà không là điều kiện đủ.

VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.

(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.

(3) hiển nhiên sai.

Vậy (1), (2), (3): sai; (4): đúng

24 tháng 6 2018

Đáp án A

Mệnh đề 1) sai vì f ' x 0 = 0  chỉ là điều kiện cần chưa là điều kiện đủ để hàm số đạt cực trị tại  x 0  

Mệnh đề 2) Sai vì khi    f ' x 0 = f ' ' x 0 = 0 có thể hàm số có thể đạt cực trị hoặc không đạt cực trị tại  x 0 .

Mệnh đề 3) sai vì f ' x  đổi dấu qua điểm  x 0  thì điểm  x 0  có thể là điểm cực đại hoặc điểm  cực tiểu của hàm số.

Mệnh đề 4) Sai vì trong trường hợp này x 0  là điểm cực tiểu của đồ thị hàm số.