K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2019

2 x - 1 + 2 x + 3 x 2 + x + 1 = 2 x - 1 2 x + 1 x 3 - 1     Đ K X Đ : x ≠ 1 ⇔ 2 x 2 + x + 1 x 3 - 1 + 2 x + 3 x - 1 x 3 - 1 = 2 x - 1 2 x + 1 x 3 - 1

⇔ 2( x 2  + x + 1) + (2x + 3)(x – 1) = (2x – 1)(2x + 1)

⇔ 2 x 2 + 2x + 2 + 2 x 2  – 2x + 3x – 3 = 4 x 2  – 1

⇔ 2 x 2  + 2 x 2  – 4 x 2  + 2x – 2x + 3x = -1 – 2 + 3

⇔ 3x = 0 ⇔ x = 0 (thỏa mãn)

Vậy phương trình có nghiệm x = 0.

23 tháng 2 2021

Mình khuyên bạn thế này : 

Bạn nên tách những câu hỏi ra 

Như vậy các bạn sẽ dễ giúp

Và cũng có nhiều bạn giúp hơn !

23 tháng 2 2021

Bài 1.

a) ( x - 3 )( x + 7 ) = 0

<=> x - 3 = 0 hoặc x + 7 = 0

<=> x = 3 hoặc x = -7

Vậy S = { 3 ; -7 }

b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0

<=> ( x - 2 )( x - 2 + x - 3 ) = 0

<=> ( x - 2 )( 2x - 5 ) = 0

<=> x - 2 = 0 hoặc 2x - 5 = 0

<=> x = 2 hoặc x = 5/2

Vậy S = { 2 ; 5/2 }

c) x2 - 5x + 6 = 0

<=> x2 - 2x - 3x + 6 = 0

<=> x( x - 2 ) - 3( x - 2 ) = 0

<=> ( x - 2 )( x - 3 ) = 0

<=> x - 2 = 0 hoặc x - 3 = 0

<=> x = 2 hoặc x = 3

1) Ta có: \(x^3-3x^2+2x=0\)

\(\Leftrightarrow x\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=2\end{matrix}\right.\)

Vậy: S={0;1;2}

2) Ta có: \(\dfrac{x^2-x-1}{x+1}=2x-1\)

\(\Leftrightarrow x^2-x-1=\left(2x-1\right)\left(x+1\right)\)

\(\Leftrightarrow x^2-x-1=2x^2+2x-x-1\)

\(\Leftrightarrow x^2-x-1-2x^2-x+1=0\)

\(\Leftrightarrow-x^2-2x=0\)

\(\Leftrightarrow-x\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vậy: S={0;-2}

28 tháng 6 2021

       3x2+2x=0

<=>x(3x+2)=0

<=>x=0 hoặc 3x+2=0

từ đó bạn giải ra x thuộc{0;-2/3}

chúc bạn học tốt và nhớ tích đúng cho mình

 

18 tháng 1 2022

Bài 1:

(x+1)(x+9)=(x+3)(x+5)

⇔x2+10x+9=x2+8x+15

⇔2x-6=0

⇔x=3

(x-1)3-x(x+1)2=5x(2-x)-11(x+2)

⇔x3-3x2+3x-1-x3-2x2-x=10x-5x2-11x-22

⇔-5x2+2x-1=-5x2-x-22

⇔3x+21=0

⇔x=-7

16 tháng 2 2023

Vì hai bài giống nhau nên anh sẽ làm mẫu bài 1 nhé.

11 tháng 8 2021

a) \(\dfrac{2}{x-3}+\dfrac{x-5}{x-1}=1\)

\(\Leftrightarrow\dfrac{2\left(x-1\right)+\left(x-5\right)\left(x-3\right)}{\left(x-3\right)\left(x-1\right)}=1\)

\(\Leftrightarrow2\left(x-1\right)+\left(x-5\right)\left(x-3\right)=\left(x-3\right)\left(x-1\right)\)

\(\Leftrightarrow2x-2+x^2-8x+15-x^2+4x-3=0\)

\(\Leftrightarrow-2x+10=0\) \(\Leftrightarrow x=5\)

b) \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{16}{x^2-1}\) (2)

Ta có \(x^2-1=\left(x-1\right)\left(x+1\right)\)

ĐKXĐ: \(x^2-1\ne0\Leftrightarrow x\ne\pm1\)

(2) \(\Leftrightarrow\dfrac{\left(x+1\right)^2-\left(x-1\right)^2-16}{x^2-1}=0\) 

mà \(x^2-1\ne0\) để phương trính có nghĩa

\(\Leftrightarrow\left(x+1\right)^2=\left(x-1\right)^2-16=0\)

\(\Leftrightarrow x^2+2x+1-x^2+2x-1-16=0\)

\(\Leftrightarrow4x-16=0\) \(\Leftrightarrow x=4\)

11 tháng 8 2021

Mình thiếu kết luận nghiệm, bạn tự bổ sung nha

12 tháng 4 2022

\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)

\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)

\(\Leftrightarrow x^2-9-x^2+3x=0\)

\(\Leftrightarrow3x-9=0\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\left(n\right)\)

Vậy \(S=\left\{3\right\}\)

12 tháng 4 2022

\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)

\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)

\(\Leftrightarrow12x-9-12x+20+2x-7>0\)

\(\Leftrightarrow2x+4>0\)

\(\Leftrightarrow2x>-4\)

\(\Leftrightarrow x>-2\)

18 tháng 3 2022

\(a,4+3x=25-4x\\ \Leftrightarrow7x=21\\ \Leftrightarrow x=3\\ b,\left(x-1\right)^2+\left(x-1\right)\left(x+3\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-1+x+3\right)=0\\ \Leftrightarrow\left(x-1\right)\left(2x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

c, ĐKXĐ:\(x\ne-1,x\ne2\)

\(\dfrac{1}{x+1}+\dfrac{3}{x-2}=\dfrac{9}{\left(x+1\right)\left(x-2\right)}\\ \Leftrightarrow\dfrac{x-2}{\left(x+1\right)\left(x-2\right)}+\dfrac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}-\dfrac{9}{\left(x+1\right)\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{x-2+3x+3-9}{\left(x+1\right)\left(x-2\right)}=0\\ \Rightarrow4x-8=0\\ \Leftrightarrow x=2\left(ktm\right)\)

4 tháng 4 2022

\(1,\dfrac{x-1}{3}=x+1\\ \Leftrightarrow x-1=3x+3\\ \Leftrightarrow3x-x=3+1\\ \Leftrightarrow x=2\)

PT có tập nghiệm S = {2}

\(2,\sqrt{16x^2+8x+1}-2=x\\ \Leftrightarrow\sqrt{\left(4x+1\right)^2}-2=x\\\Leftrightarrow 4x+1-2=x\\ \Leftrightarrow4x-x=2-1\\ \Leftrightarrow x=\dfrac{1}{3}\)

PT có tập nghiệm S = {1/3}

\(3,\left\{{}\begin{matrix}2x+y=17\\x-2y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+y=17\\2x-4y=2\end{matrix}\right.\\ \Leftrightarrow\left(2x+y\right)-\left(2x-4y\right)=17-2\\ \Leftrightarrow5y=15\\ \Leftrightarrow y=3\\ \Leftrightarrow2x+3=17\\ \Leftrightarrow2x=14\\ \Leftrightarrow x=7\)

PTHH có tập nghiệm (x; y) là (7; 3)

26 tháng 5 2021

1)  \(3x-2x+6=6\Leftrightarrow x=0\)

2) \(4\left(2x-1\right)-12x-12=3\left(x+2\right)\)

\(\Leftrightarrow8x-4-12x-12-3x-6=0\)

\(\Leftrightarrow7x=-22\Leftrightarrow x=\dfrac{-22}{7}\)

26 tháng 5 2021

3, \(\left(x-1\right)2=9\left(x+1\right)2\)

\(\Leftrightarrow2x-2\)    \(=18x+18\)

\(\Leftrightarrow2x-18x=18+2\)

\(\Leftrightarrow-16x\)       \(=20\)

\(\Leftrightarrow x\)             \(=\dfrac{-5}{4}\)      

                   Vậy pt đã cho có tập nghiệm là S= \(\left\{\dfrac{-5}{4}\right\}\)

4, \(\dfrac{x-4}{x-1}+\dfrac{x+4}{x+1}=2\) ( ĐKXĐ : \(x\ne\pm1\) )

\(\Leftrightarrow\dfrac{\left(x-4\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{\left(x+4\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{2\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(\Rightarrow x^2-3x-4+x^2+3x-4=2x^2-2\)

\(\Leftrightarrow2x^2-8-2x^2+2=0\)

\(\Leftrightarrow0\)                           \(=6\)  ( Vô lí )

                        Vậy pt đã cho vô nghiệm