Cho hình thang cân ABCD có các cạnh đáy và cạnh bên AD=BC=2a Tính theo a thể tích V của khối tròn xoay thu được khi quay hình thang cân ABCD quanh trục đối xứng của nó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Khi quay hình thang cân ABCD quanh trục đối xứng ta được hình nón cụt có chiều cao h = 2 a 2 và bán kính 2 đáy là R 1 = a , R 2 = 2 a .
Vậy thể tích cần tính là V = πh 3 R 1 2 + R 2 2 + R 1 R 2 = 14 2 3 πa 3
Chọn hệ trục Oxy trong đó A = O, Ox = AC. Hình thang thỏa mãn bài toán có A C ⊥ C D , góc đáy bằng 60 O , A C = A D . sin 60 o = a 3 ⇒ D a 3 ; a . PT đường thẳng AD là y = 1 3 x
Vậy thể tích cần tính
V = π ∫ 0 a 3 1 3 x 2 dx = π 9 x 3 0 a 3 = πa 3 3 3
Đáp án cần chọn là B
Đáp án B
Chọn hệ trục Oxy trong đó A ≡ O ; O x ≡ A C
Hình thang thỏa mãn bài toán có A C ⊥ C D , góc đáy bằng 60 o
⇒ PT đường thẳng AD là y = 1 3 x
Vậy thể tích cần tính