Cho n là số nguyên dương; a, b là các số thực (a>0). Biết trong khai triển a - b a n có số hạng chứa a 9 b 4 . Số hạng có số mũ của a và b bằng nhau trong khai triển a - b a n là
A. 6006 a 5 b 5
B. 5005 a 8 b 8
C. 3003 a 5 b 5
D. 5005 a 6 b 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì d là ước nguyên dương của 2n2 => d.q= 2n2
=> n2= d.q:2
Ta có: n2+d= d.q:2+d
=> n2+d= d.(q:2+1)
Vậy n2+d không phải là số chính phương ĐPCM
này các bn oi cho mk hoi
tại sao \(d\left(\frac{q}{2}+1\right)\)ko là số cp
Tổng của 5 số nguyên dương liên tiếp có dạng: \(\frac{\left(a+a+4\right)\cdot5}{2}=5\left(a+2\right)⋮5\)
(a và a+4 là số đầu và số cuối khi xếp từ bé đến lớn)
Làm tương tự với tổng của 7 số và 9 số
Suy ra số cần tìm chia hết cho 5,7,9
Mà BCNN(5,7,9)=315 nên số cần tìm là 315
Ta có n = a + (a + 1) + (a + 2) + (a + 3) + (a + 4) với a là số tự nhiên
Khi đó n = 5a + 10 = 5.(a + 2) chia hết cho 5.
Ta lại có n = b + (b + 1) + (b + 2) + (b + 3) + (b + 4) + (b + 5) + (b + 6) với b là số tự nhiên.
Khi đó n = 7b + 21 = 7.(b + 3) chia hết cho 7.
Do đó n vừa chia hết cho 5 vừa chia hết cho 7 nên n là bội chung của 5 và 7.
Mà n là nhỏ nhất nên n là BCNN(5; 7).
Ta có 5 = 5, 7 = 7.
BCNN(5, 7) = 5.7 = 35.
Vậy n = 35.