Cho tứ diện O.ABC có cạnh OA, OB, OC đôi một vuông góc với nhau. Biết OA=2cm, OB=3cm, OC=6cm. Tính thể tích của khối tứ diện O.ABC
A. 6 c m 3
B. 36 c m 3
C. 12 c m 3
D. 18 c m 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án C
Ta có:
Diện tích tam giác OAB là:
Thể tích khối chóp O.ABC là:
Chọn A.
Gọi khoảng cách từ điểm M đến các mặt bên (OAB), (OBC), (OCA) lần lượt là a, b, c.
Khi đó
Hay
Thể tích khối gỗ hình hộp chữ nhật theo đề bài là V = abc
Ta có : (Theo bất đẳng thức Cô-sin).
Vậy V = abc đạt giá trị lớn nhất bằng khi
Qua B kẻ đường thẳng song song OM cắt OC kéo dài tại D
\(\Rightarrow OM||\left(ABD\right)\Rightarrow d\left(OM;AB\right)=d\left(OM;\left(ABD\right)\right)=d\left(O;\left(ABD\right)\right)\)
Gọi E là trung điểm BD, từ O kẻ \(OH\perp AE\)
\(BD||OM\) và M là trung điểm BC\(\Rightarrow OM\) là đường trung bình tam giác BCD
\(\Rightarrow BD=2OM=BC\Rightarrow\Delta BCD\) vuông cân tại B
O là trung điểm CD (do OM là đường trung bình BCD), E là trung điểm BD
\(\Rightarrow OE\) là đường trung bình tam giác BCD \(\Rightarrow\left\{{}\begin{matrix}OE=\dfrac{1}{2}BC=\dfrac{a\sqrt{2}}{2}\\OE||BC\Rightarrow OE\perp BD\end{matrix}\right.\)
\(\left\{{}\begin{matrix}OA\perp OB\\OA\perp OC\end{matrix}\right.\) \(\Rightarrow OA\perp\left(OBC\right)\Rightarrow OA\perp BD\)
\(\Rightarrow BD\perp\left(OAE\right)\Rightarrow BD\perp OH\)
\(\Rightarrow OH\perp\left(ABD\right)\Rightarrow OH=d\left(O;\left(ABD\right)\right)\)
Áp dụng hệ thức lượng trong tam giác vuông OAE:
\(OH=\dfrac{OA.OE}{AE}=\dfrac{OA.OE}{\sqrt{OA^2+OE^2}}=\dfrac{a\sqrt{3}}{3}\)
Chọn A.
Gọi khoảng cách từ điểm M đến các mặt bên (OAB), (OBC), (OCA) lần lượt là a, b, c.
Khi đó
Hay
Thể tích khối gỗ hình hộp chữ nhật theo đề bài là V = abc
Ta có (Theo bất đẳng thức Cô-sin).
Vậy V = abc đạt giá trị lớn nhất bằng 8( c m 3 ) khi a = 4b = 2c