Khối 12 có 9 học sinh giỏi, khối 11 có 10 học sinh giỏi, khối 10 có 3 học sinh giỏi. Chọn ngẫu nhiên 2 học sinh trong số đó. Xác suất để 2 học sinh được chọn cùng khối.
A. 2 11
B. 4 11
C. 3 11
D. 5 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Lấy 8 học sinh trong 19 học sinh có C 19 8 = 75582 cách.
Suy ra số phân tử của không gian mẫu là n ( Ω ) = 75582
Gọi X là biến cố “8 học sinh được chọn có đủ 3 khối”
Xét biến cố đối của biến cố X gồm các trường hợp sau:
+ 8 học sinh được chọn từ 2 khối, khi đó có C 14 8 + C 11 8 + C 13 8 cách.
+ 8 học sinh được chọn từ 1 khối, khi đó có C 8 8 cách.
Do đó, số kết quả thuận lợi cho biển cổ X là n ( X ) = C 19 8 - ( C 14 8 + C 11 8 + C 13 8 + C 8 8 ) = 71128 .
Vậy xác suất cần tính là P = n ( X ) n ( Ω ) = 71128 75582 .
Đáp án D
Phương pháp:
+ ) P ( A ) = n ( A ) n ( Ω )
+ P(A) = 1P( A )
Cách giải: Số phần tử của không gian mẫu: n ( Ω ) = C 18 6
Gọi A: “Mỗi khối có ít nhất 1 học sinh được chọn.”
Đáp án D
Phương pháp:
Cách giải: Số phần tử của không gian mẫu:
Gọi A: “Mỗi khối có ít nhất 1 học sinh được chọn.”
Khi đó
Xác suất:
Q(x)=x^5(3x-5)^7
Số hạng chứa x^10 sẽ tương ứng với số hạng chứa x^5 trong (3x-5)^7
SHTQ là: \(C^k_7\cdot\left(3x\right)^{7-k}\cdot\left(-5\right)^k=C^k_7\cdot3^{7-k}\cdot\left(-5\right)^k\cdot x^{7-k}\)
Số hạng chứa x^5 tương ứng với 7-k=5
=>k=2
=>Số hạng cần tìm là: 127575x^10
Đáp án là D
Số cách chọn 6 học sinh bất kì trong 12 học sinh là: C 12 6 cách.
Số cách chọn 6 học sinh mà trong đó không có học sinh khối 10 ( hay 6 học sinh từ khối 11 và 12) là: C 7 6 cách.
Số cách chọn 6 học sinh mà trong đó không có học sinh khối 11 (hay 6 học sinh từ khối 10 và 12) là: C 8 6 cách.
Số cách chọn 6 học sinh mà trong đó không có học sinh khối 12 (hay 6 học sinh từ khối 10 và 11) là: C 9 6 cách.
Vậy có C 12 6 - ( C 7 6 + C 8 6 + C 9 6 ) = 805 cách chọn thỏa mãn yêu cầu bài toán.
Đáp án B
Xác suất bằng C 9 2 + C 10 2 + C 3 2 C 22 2 = 4 11 .