Trong không gian Oxyz, mặt cầu (S) đi qua điểm O và cắt trục Ox, Oy, Oz lần lượt tại các điểm A, B, C khác O thỏa mãn tam giác ABC có trọng tâm là G(-6;-12;18). Tọa độ tâm của mặt cầu (S) là
A. (3;6;-9)
B. (-3;-6;-9)
C. (-9;-18;27)
D. (9;18;-27)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp giải: Xác định tọa độ ba điểm A, B, C và gọi tâm I, sử dụng điều kiện cách đều IA=IB=IC=IO để tìm tọa độ tâm I của mặt cầu
Lời giải:
Gọi A(a;0;0), B(0;b;0), C(0;0;c) => Tọa độ trọng tâm G là
Gọi tâm mặt cầu (S) là I(x;y;z) => IO =IA = IB =IC
Vậy tọa độ tâm mặt cầu là I(3;6;12)
Đáp án A
Phương pháp giải: Xác định tọa độ ba điểm A, B, C và gọi tâm I, sử dụng điều kiện cách đều IA = IB = IC = IO để tìm tọa độ tâm I của mặt cầu
Lời giải:
Gọi A(a;0;0); B(0;b;0); C(0;0;c) => Tọa độ trọng tâm G là
Gọi tâm mặt cầu (S) là
Vậy tọa độ tâm mặt cầu là I(3;6;12)
Chọn B.
là giao điểm của mặt phẳng (α) các trục Ox, Oy, Oz
Phương trình mặt phẳng
Ta có G là trọng tâm tam giác ABC
Đáp án D
Ta có: OA → OB, OC => OA → (OBC) => OA → BC
Mặt khác vì AM → BC (M là trực tâm tam giác ABC) nên ta suy ra BC → (OAM) => BC → OM
Chứng minh tương tự ta được AC → OM. Do đó OM → (ABC). Ta chọn: n p → = OM → = (1; -2; 3)
Từ đó suy ra phương trình của mặt phẳng (P) là:
1(x - 1) - 2(y + 2) + 3(z - 3) = 0 ⇔ x - 2y + 3z - 14 = 0
Đáp án D
Ta có OA ⊥ OB, OC => OA ⊥ (OBC) => OA ⊥ BC.
Mặt khác ta có AM ⊥ BC nên ta suy ra BC ⊥ (OAM) => BC ⊥ OM
Chứng minh tương tự ta được AC ⊥ OM. Do đó OM ⊥ (ABC).
Ta chọn n P → = OM → = (1; 2; 2). Từ đó suy ra phương trình của mặt phẳng (P) là:
1(x - 1) + 2(y - 2) + 2(z - 2) = 0 <=> x + 2y + 2z - 9 = 0
Chọn D
Đáp án A
Gọi A(a; 0; 0), B(0; b; 0), C(0; 0; c) với a, b, c > 0. Phương trình của mặt phẳng (P) là:
Suy ra: a = b = c = 6. Vậy có một mặt phẳng (P) thỏa mãn bài toán.
Đáp án B
Vì OA, OB, OC đôi một vuông góc và M là trực tâm Δ A B C ⇒ O M ⊥ A B C
Suy ra mp A B C nhận O M → làm véc tơ pháp tuyến và đi qua điểm M(1;2;3)
Vậy phương trình m p P : 1. x − 1 + 2. y − 2 + 3. z − 3 = 0 ⇔ x + 2 y + 3 z − 14 = 0
Đáp án B
Vì OA, OB, OC đôi một vuông góc và M là trực tâm tam giác ABC => OM ⊥ (ABC)
Suy ra mp(ABC) nhận O M → làm véc tơ pháp tuyến và đi qua điểm M(1;2;3)
Vậy phương trình mp(P):
<=> x +2y+3z -14=0
Đáp án C
Gọi A(a; 0; 0), B(0; b; 0), C(0; 0; c). Vì M(1;2;3) là trọng tâm của tam giác ABC nên ta có:
Vậy phương trình của mặt phẳng (P) là: x 3 + y 6 + z 9 = 1