K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2018

Đáp án D

Gọi A x ; y , B − x ; − y  là 2 điểm đối xứng qua gốc tọa độ

Do 2 điểm thuộc đồ thị nên ta có:

y = x 3 + 2 m − 1 x 2 + m − 1 x + m − 2 − y = − x 3 + 2 m − 1 − x 2 − m − 1 x + m − 2

Cộng vế theo vế ta được:

2 m − 1 x 2 + m − 2 = 0 ⇔ x 2 = − m + 2 2 m − 1

Tồn tại 2 điểm phân biệt A, B khi x 2 > 0 ,  tức là  − m + 2 2 m − 1 > 0 ⇔ 1 2 < m < 2

3 tháng 1 2019

hello ban

17 tháng 5 2020

Trả lời :

Bn Do Phuong Mai đừng bình luận linh tinh nhé !

- Hok tốt !

^_^

5 tháng 6 2021

G/s (P),(d),(d1) cùng đi qua một điểm

Gọi I(a,b) là giao điểm của (P),(d),(d1)

Có \(I\in\left(P\right),\left(d\right),\left(d1\right)\)\(\Rightarrow\left\{{}\begin{matrix}b=a^2\left(1\right)\\b=a+2\left(2\right)\\b=-a+m\left(3\right)\end{matrix}\right.\)

Từ (1);(2)\(\Rightarrow a^2=a+2\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2\\a=-1\end{matrix}\right.\)

TH1: Tại \(a=2\Rightarrow b=a^2=4\)

Thay \(a=2;b=4\) vào (3) ta được:\(4=-2+m\) \(\Leftrightarrow m=6\)

TH2: Tại \(a=-1\Rightarrow b=a^2=1\)

Thay \(a=-1;b=1\) vào (3) ta được:\(1=1+m\) \(\Leftrightarrow m=0\)

Vậy m=6 hoặc m=0

5 tháng 6 2021

Phương trình hoành độ giao điểm của (d) và (P):

\(x^2=x+2\)

\(\Leftrightarrow x^2-x-2=0\)(*)

Ta có: \(a-b+c=1-\left(-1\right)+\left(-2\right)=0\)

Do đó phương trình (*) có 2 nghiệm phân biệt

\(x_1=-1;x_2=\dfrac{-c}{a}=2\)

\(x_1=-1\) thì \(y_1=x_1^2=\left(-1\right)^2=1\)

\(x_2=2\) thì \(y_2=x_2^2=2^2=4\)

Vậy (d) và (P) cắt nhau tại 2 điểm phân biệt \(A\left(-1;1\right);B\left(2;4\right)\)

Do đó các đồ thị của (P), (d) và \(\left(d_1\right)\)cùng đi qua 1 điểm 

\(\Leftrightarrow\left[{}\begin{matrix}A\in\left(d_1\right)\\B\in\left(d_1\right)\end{matrix}\right.\)               \(\Leftrightarrow\left[{}\begin{matrix}1=1+m\\4=-2+m\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=6\end{matrix}\right.\)

Vậy khi m=0 hoặc m=6 thì các đồ thị của (P),(d) và cùng đi qua 1 điểm

-Chúc bạn học tốt-

13 tháng 8 2017

Chọn D.

TXĐ: D = R.

Đồ thị hàm số có 3 điểm cực trị ⇔ y' = 0 có ba nghiệm phân biệt  ⇔ m -1 > 0  ⇔ m > 1(*) 

3 điểm cực trị của đồ thị hàm số là: A(0;1), 

Hàm số đã cho là hàm số chẵn nên đồ thị hàm số nhận Oy làm trục đối xứng

Ta có 

Kết hợp với điều kiện (*) => m = 2 

Làm theo bào toán trắc nghiệm như sau:

Hàm số đã cho có 3 điểm cực trị khi ab < 0  

Chỉ có đáp án D thỏa mãn.

16 tháng 12 2021

Để hai đồ thi có điểm chung thì 

\(-2x^2-2x+m+3=0\) có nghiệm

\(\Leftrightarrow4-4\cdot\left(-2\right)\left(m+3\right)>=0\)

\(\Leftrightarrow4+8m+24>=0\)

hay m>=-7/4

22 tháng 12 2023

a: Thay x=1 và y=-1 vào (d), ta được:

\(\left(m-2\right)\cdot1+m+1=-1\)

=>m-2+m+1=-1

=>2m-1=-1

=>2m=0

=>m=0

b: Thay y=0 vào y=x+2, ta được:

x+2=0

=>x=-2

Thay x=-2 và y=0 vào y=(m-2)x+m+1, ta được:

-2(m-2)+m+1=0

=>-2m+4+m+1=0

=>5-m=0

=>m=5

4 tháng 12 2021

a) Để đồ thị hàm số \(y=\left(m-2\right)x+2\) đồng biến trên R.

=> \(m-2>0.\)

<=> \(m>2.\)

b) Đồ thị hàm số \(y=\left(m-2\right)x+2\) song song với đường thẳng \(y=5x+1.\)

=> \(m-2=5.\)

<=> \(m=7.\)

4 tháng 12 2021

Câu 2

a) Để hs đã cho đồng biến trên R thì:

\(m-2>0\\ < =>m>2\)

b) Đề đths đã cho song song với đường thẳng \(y=5x+1\) thì:

\(m-2=5\\ < =>m=7\)