Trong không gian với hệ trục Oxyz, cho 2 điểm A ( 2 ; 1 ; − 3 ) ; B ( 2 ; 4 ; 1 ) . Gọi (d) là đường thẳng đi qua trọng tâm tam giác ABO sao cho tổng khoảng cách từ các điểm A, B, O đến đường thẳng (d) là lớn nhất. Trong các véc tơ sau, véc tơ nào là một véc tơ chỉ phương của (d)?
A. u → = 13 ; 8 ; 6
B. u → = − 13 ; 8 ; 6
C. u → = 13 ; 8 ; − 6
D. u → = − 13 ; 8 ; − 6
Đáp án D
Điểm A ( 2 ; 1 ; − 3 ) , B ( 2 ; 4 ; 1 ) , O 0 ; 0 ; 0 suy ra G là trọng tâm tam giác ABO là G 2 3 ; 5 3 ; − 2 3
Gọi M, N, P lần lượt là hình chiếu vuống góc cuả A, B, O trên đường thẳng d
Khi đó, khoảng cách:
d A → d = A M ; d B → d = B N ; d O → d = O P
Mặt khác A M ≤ A G B N ≤ B G O P ≤ O G
⇒ d A → d + d B → d + d O → d ≤ A G + B G + O G = c o n s t
Dấu “=” xảy ra khi và chỉ khi đường thẳng d vuông góc mặt phẳng A B O tại G
Ta có O A → = 2 ; 1 ; − 3 O B → = 2 ; 4 ; 1 ⇒ n A B O → = 13 ; − 8 ; 6
⇒ véc tơ chỉ phương của (d) là u → = − 13 ; 8 ; − 6