Cho hình nón đỉnh S, chiều cao S0=h, bán kính đáy bằng R. Gọi M là điểm nằm trên đoạn SO, đặt OM=x ( 0 < x < h Cắt hình nón bằng mặt phẳng (P) đi qua M và vuông góc với SO, thiết diện thu được là đường tròn (C). Tìm x để thể tích của khối nón đỉnh O đáy là hình tròn giới hạn bởi (C) đạt giá trị lớn nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Gọi r là bán kính đáy của hình nón đỉnh O.
Ta có r R = h − x h ⇒ r = h − x h R
Chiều cao của khối nón đỉnh O là x
Thể tích của khối nón đỉnh O là:
V = 1 3 π h − x h 2 x = π R 2 6 h 2 h − x h − x 2 x ≤ π R 2 6 h 2 h − x + h − x + 2 x 3 3 = π R 2 6 h 2 2 h 3 3 = 4 π R 2 h 81
⇒ V m a x ⇔ h − x = 2 x ⇔ x = h 3
Chọn đáp án D
Ta có BM là bán kính đường tròn (C).
Thể tích của khối nón đỉnh O đáy là (C) là:
Xét hàm số
Ta có:
Bảng biến thiên:
Từ bảng biến thiên ta có thể tích khối nón đỉnh O đáy là (C) lớn nhất bằng
Đáp án C
Gọi R = 10 và r lần lượt là bán kính đát của hình nón lớn và hình nón nhỏ.
Ta có:
r R = S M S O = S O − M O S O ⇔ r 10 = 3 5 ⇔ r = 6 c m
Diện tích xung quanh của hình nón nhỏ là S x q = π r S M 2 + r 2 = 36 π 26 c m 2
Đáp án B