K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2017

Tập xác định D = R, nhưng f(1) = -1 + 3 - 2 = 0 còn f(-11) = -1 - 3 - 2 = -6 nên f(-1) ≠ f(1) và f(-1) ≠ -f(1)

    Vậy hàm số đã cho không là hàm số chẵn cũng không là hàm số lẻ.

16 tháng 11 2021

1: \(f\left(-x\right)=\left(-x\right)^2=x^2\)

Vậy: Hàm số này chẵn

3 tháng 11 2018

Đặt y = f(x) = (x + 2)2.

+ TXĐ: D = R nên với ∀x ∈ D thì –x ∈ D.

+ f(–x) = (–x + 2)2 = (x – 2)2 ≠ (x + 2)2 = f(x)

+ f(–x) = (–x + 2)2 = (x – 2)2 ≠ – (x + 2)2 = –f(x).

Vậy hàm số y = (x + 2)2 không chẵn, không lẻ.

24 tháng 10 2021

\(f\left(-x\right)=\sqrt[3]{-x+2}-\sqrt[3]{-x-2}\)

\(=-\left(\sqrt[3]{x-2}-\sqrt[3]{x+2}\right)\)

=f(x)

Vậy: f(x) là hàm số chẵn

10 tháng 10 2019

y = √x

TXĐ: D = [0; +∞) ⇒ x ∈ D thì -x ∉ D

Vậy hàm số trên không là hàm số chẵn cũng không là hàm số lẻ.

17 tháng 2 2018

y = f(x) = 1/x

TXĐ: D = R \{0} ⇒ x ∈ D thì-x ∈ D

f(-x) = 1/(-x) = -1/x = -f(x)

Vậy y = f(x) = 1/x là hàm số lẻ.

5 tháng 12 2017

Đặt y = f(x) = |x|.

+ Tập xác định D = R nên với ∀ x ∈ D thì –x ∈ D.

+ f(–x) = |–x| = |x| = f(x).

Vậy hàm số y = |x| là hàm số chẵn.

18 tháng 10 2021

\(f\left(-x\right)=\left(-x\right)^{2020}-2\cdot\left(-x\right)^2-3\)

\(=x^{2020}-2x^2-3\)

=f(x)

=> f(x) là hàm số chẵn

Cho hàm số \(y = \tan x\)a) Xét tính chẵn, lẻ của hàm sốb) Hoàn thành bảng giá trị của hàm số \(y = \tan x\) trên khoảng\(\;\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).      \(x\)     \( - \frac{\pi }{3}\)     \( - \frac{\pi }{4}\)      \( - \frac{\pi }{6}\)0\(\frac{\pi }{6}\)\(\frac{\pi }{4}\)\(\frac{\pi }{3}\)\(y = \tan x\)???????Bằng cách lấy nhiều điểm \(M\left( {x;\tan x} \right)\) với \(x \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) và...
Đọc tiếp

Cho hàm số \(y = \tan x\)

a) Xét tính chẵn, lẻ của hàm số

b) Hoàn thành bảng giá trị của hàm số \(y = \tan x\) trên khoảng\(\;\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).

      \(x\)

     \( - \frac{\pi }{3}\)

     \( - \frac{\pi }{4}\)

      \( - \frac{\pi }{6}\)

0

\(\frac{\pi }{6}\)

\(\frac{\pi }{4}\)

\(\frac{\pi }{3}\)

\(y = \tan x\)

?

?

?

?

?

?

?

Bằng cách lấy nhiều điểm \(M\left( {x;\tan x} \right)\) với \(x \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) và nối lại ta được đồ thị hàm số \(y = \tan x\) trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).

c) Bằng cách làm tương tự câu b cho các đoạn khác có độ dài bằng chu kỳ \(T = \pi \), ta được đồ thị của hàm số \(y = \tan x\) như hình dưới đây.

Từ đồ thị ở Hình 1.16, hãy tìm tập giá trị và các khoảng đồng biến của hàm số \(y = \tan x\).

1
HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Tập xác định của hàm số là \(D = \mathbb{R}\;\backslash \left\{ {\frac{\pi }{2} + k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}} \right\}\)

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D

Ta có: \(f\left( { - x} \right) = \tan \left( { - x} \right) =  - \tan x =  - f\left( x \right),\;\forall x\; \in \;D\)

Vậy \(y = \tan x\) là hàm số lẻ.

b)

    \(x\)

     \( - \frac{\pi }{3}\)

      \( - \frac{\pi }{4}\)

      \( - \frac{\pi }{6}\)

     \(0\)

\(\frac{\pi }{6}\)

\(\frac{\pi }{4}\)

\(\frac{\pi }{3}\)

  \(\tan x\)

\( - \sqrt 3 \)

   \( - 1\)

      \( - \frac{{\sqrt 3 }}{3}\)

     \(0\)

\(\frac{{\sqrt 3 }}{3}\)

      \(1\)

\(\sqrt 3 \)

 

c) Từ đồ thị trên, ta thấy hàm số \(y = \tan x\) có tập xác định là \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}} \right\}\), tập giá trị là \(\mathbb{R}\) và đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k\pi ;\frac{\pi }{2} + k\pi } \right)\).