Tìm miền xác định của hàm số y = log 1 - 5 x 2 - x
A. D = - ∞ ; 1 5 ∪ 2 ; + ∞
B. D = - ∞ ; 2 ∪ 1 5 ; + ∞
C. D = ( - ∞ ; 2 ] ∪ [ 1 5 ; + ∞ )
D. D = - ∞ ; 1 5 ∩ 2 ; + ∞
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,D=R\\ b,2x-3>0\\ \Rightarrow x>\dfrac{3}{2}\\ \Rightarrow D=(\dfrac{3}{2};+\infty)\\ c,-x^2+4>0\\ \Rightarrow x^2< 4\\ \Leftrightarrow-2< x< 2\\ \Rightarrow D=\left(-2;2\right)\)
Chọn A
Điều kiện xác định:
Vậy tập xác định của hàm số (1) là
a, Điều kiện: \(2^x\ne3\Rightarrow x\ne log_23\)
Vậy D = R \ \(log_23\)
b, Điều kiện: \(25-5^x\ge0\Rightarrow5^x\le5^2\Rightarrow x\le2\)
Vậy D = \((-\infty;2]\)
c, Điều kiện: \(\left\{{}\begin{matrix}x>0\\lnx\ne1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>0\\x\ne e\end{matrix}\right.\)
Vậy D = \(\left(0;+\infty\right)\backslash\left\{e\right\}\)
d, Điều kiện: \(\left\{{}\begin{matrix}x>0\\1-log_3x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>0\\log_3x\le1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>0\\x\le3\end{matrix}\right.\Rightarrow0< x\le3\)
Vậy D = \((0;3]\)
ĐKXĐ:
a.
\(x^2-16>0\Rightarrow\left[{}\begin{matrix}x>4\\x< -4\end{matrix}\right.\)
b.
\(x^2-2x+1>0\Rightarrow\left(x-1\right)^2>0\Rightarrow x\ne1\)
c.
\(\left(2-x\right)\left(x+1\right)>0\Rightarrow-1< x< 2\)
d.
\(\left(x^2-1\right)\left(x+5\right)>0\Rightarrow\left[{}\begin{matrix}-5< x< -1\\x>1\end{matrix}\right.\)
Điều kiện
Miền xác định là
Chọn A