K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2016

làm thì dài lắm

Tick cho mk

19 tháng 1 2016

4n+3 ⋮ 3n+4      ⇒  3(4n+3) ⋮ 3n+4
mà 3n+4 ⋮ 3n+4 ⇒ 4(3n+4) ⋮ 3n+4
⇒ 3(4n+3) - 4(3n+4) ⋮ 3n+4
    12n+9 - 12n - 4  ⋮ 3n+4
13 ⋮ 3n+4
⇒ 3n+4 ∈ Ư(13) 
Ư(13) = {1;13}
⇒ 3n+4 ∈ {1;13}
⇒ n+4 ∈ {...}
⇒ n ∈ {...}

Bạn tự hiểu được rồi nha ^^ chỉ cần tìm Ư(13) 

20 tháng 1 2016

viết lại đề

(n^2+3n-13) chia hết (n+3)

đề như v đúng ko

19 tháng 1 2016

=>3(4n+3) chia hết cho 3n+4

=>(12n+16)-16+9 chia hết cho 3n+4

=>4(3n+4) - 7 chia hết cho 3n+4

Mà 4(3n+4) chia hết cho 3n+4

=>7 chia hết cho 3n+4

=> 3n+4 thuộc Ư(7)={1;7;-1;-7}

=>3n thuộc {-3;3;-5;-11}

=>n thuộc {-1;1; -5/3 ; -11/3 }

Mad n là số nguyên

=> n thuộc {-1;1}

19 tháng 1 2016

=>3(4n+3) chia hết cho 3n+4

=>(12n+16)-16+9 chia hết cho 3n+4

=>4(3n+4) - 7 chia hết cho 3n+4

Mà 4(3n+4) chia hết cho 3n+4

=>7 chia hết cho 3n+4

=> 3n+4 thuộc Ư(7)={1;7;-1;-7}

=>3n thuộc {-3;3;-5;-11}

=>n thuộc {-1;1; -5/3 ; -11/3 }

Mad n là số nguyên

=> n thuộc {-1;1}

25 tháng 11 2017

Cac ban lam nhanh gium nhe

26 tháng 1 2019

bai toan kiem tra15 phut truong minh do. the nao co kho ko giup to voi cac ban

26 tháng 1 2019

\(4n+1⋮\left(n-3\right)\)

\(\Rightarrow4.\left(n-3\right)+13⋮\left(n-3\right)\)

\(\Rightarrow13⋮\left(n-3\right)\Rightarrow\left(n-3\right)\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)

\(\Rightarrow n\in\left\{4;2;16;-10\right\}\)

22 tháng 2 2017

a) 2n + 1 \(⋮\)n - 5

=> 2.( n - 5 ) + 1 + 10   \(⋮\)n - 5

=> 2.( n - 5 ) + 11  \(⋮\)n - 5

=> 11  \(⋮\)n - 5 [ vì 2.( n - 5 )  \(⋮\)n - 5 ]

=> n - 5 \(\in\)Ư(11) = { -11 ;- 1;1 ; 11 }

=> n \(\in\){ -6; 4;6;16 } 

Vậy: n \(\in\){ -6; 4;6;16 } 

b) n2 + 3n - 13 \(⋮\)n + 3 

=> n.n + 3n - 13  \(⋮\)n + 3 

=> n.( n+ 3 ) + 3 . ( n + 3 ) - 13 - 3n - 9  \(⋮\)n + 3 

=> 13 - 3n - 9  \(⋮\)n + 3  [ vì  n.( n + 3 ) và 3.( n + 3 )  \(⋮\)n + 3  ] 

=> 3n - 22  \(⋮\)n + 3 

=>3.( n - 3 ) - 22 - 9  \(⋮\)n + 3 

=> 3.( n - 3 ) - 31    \(⋮\)n + 3 

=> 31  \(⋮\)n + 3  [ vì 3. ( n - 3 )  \(⋮\)n + 3  ]

=> n + 3 \(\in\)Ư ( 31 ) = { -31 ; -1 ; 1 ; 31 }

=> n \(\in\){ -34 ; -4; -2 ; 28 } 

Vậy:  n \(\in\){ -34 ; -4; -2 ; 28 } 

c) n+ 3 \(⋮\) n - 1 

=> n.n + 3  \(⋮\) n - 1 

=> n.( n - 1 ) + 3 - n  \(⋮\) n - 1 

=> 3 - n  \(⋮\) n - 1  [  vì n.( n - 1 )  \(⋮\) n - 1  ]

=>  n - 3  \(⋮\) n - 1 

=> ( n - 1 ) - 2  \(⋮\) n - 1 

=> n - 1 \(\in\)Ư( 2 )= { -2 ; - 1; 1 ; 2 }

=> n  \(\in\){ -1 ; 0 ;2 ;3 }

 vậy:  n  \(\in\){ -1 ; 0 ;2 ;3 }