Trên hình 151 cho thấy ta có thể xác định chiều rộng BB' của khúc sông bằng cách xét hai tam giác đồng dạng ABC và AB'C'. Hãy tính BB' nếu AC = 100m, AC' = 32cm, AB' = 34m.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Tam giác ACC' đồng dạng tam giác ABB'
=> Tam giác AB'C' đồng dạng tam giác ABC
Hình dễ bạn tự vẽ nhé !
a) Xét tam giác ABC và tam giác AB'C' có:
AC = AC'
BAC= B'AC'
AB = AB
nên tam giác ABC = tam giác AB'C' ( c.g.c )
b) Từ tam giác ABC = tam giác AB'C' => C'B' = CB, ABC = AB'C', ACB = AC'B'
Hình dễ bn tự vẽ nhé
a,Xét \(\Delta ABC\)và\(\Delta AB’C’\),có:
\(AB=AB’\)(gt)
\(AC=AC’\)(gt)
\(\widehat{BAC}=\widehat{B’AC’}\)(đối đỉnh)
\(\Rightarrow\Delta ABC=\Delta AB’C’\)(c.g.c)
b,tam giác ABC và tam giác AB’C’ có những cặp cạnh, cặp góc bằng nhau là:
BC=B’C’(2 cạnh tương ứng)
\(\widehat{ABC}=\widehat{AB’C’}\)(2 góc tương ứng)
\(\widehat{BCA}=\widehat{B’C’A}\)(2 góc tương ứng)
k mik nhé!!!
#sadgirl#
+ Mô tả cách làm:
- Chọn một điểm A cố định bên mép bờ sông bên kia (chẳng hạn như là một thân cây), đặt hai điểm B và B' thẳng hàng với A, điểm B sát mép bờ còn lại và AB chính là khoảng cách cần đo.
- Trên hai đường thẳng vuông góc với AB' tại B và B' lấy C và C' thằng hàng với A.
- Đo độ dài các đoạn BB' = h, BC = a, B'C' = a' ta sẽ tính được đoạn AB.
+ Cách tính AB.
Ta có: BC ⊥ AB’ và B’C’ ⊥ AB’ ⇒ BC // B’C’
ΔAB’C’ có BC // B’C’ (B ∈ AB’, C ∈ AC’)
⇒ (hệ quả định lý Talet)
Đáp án là A
và AC bằng khoảng cách giữa B và (AA’C’C) và bằng 2 lần khoảng cách từ H tới (AA’C’C) và bằng 2HQ.