Cho f ( x ) = 2 x 3 - x 2 + 3 g ( x ) = x 3 + x 2 2 - 3
Giải bất phương trình f′(x) > g′(x).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x)=x^3-2x^2+3x+1
g(x)=x^3+x^2-5x+3
a: f(-1/3)=-1/27-2/9-1+1=-1/27-6/27=-7/27
g(-2)=-8+4+10+3=17-8=9
b: f(x)-g(x)=x^3-2x^2+3x+1-x^3-x^2+5x-3
=x^2+8x-2
f(x)+g(x)
=x^3-2x^2+3x+1+x^3+x^2-5x+3
=2x^3-x^2-2x+4
Mình hướng dẫn cách làm chung nhé
f(x) chia hết cho g(x) ⇔ f(x) nhận các nghiệm của g(x) làm nghiệm
Từ đây dễ rồi :]>
?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
`1,`
`f(x)+g(x)=(5x^4+4x^2-2x+7)+(4x^4-2x^3+3x^2+4x-1)`
`= 5x^4+4x^2-2x+7+4x^4-2x^3+3x^2+4x-1`
`=(5x^4+4x^4)-2x^3+(4x^2+4x^2)+(-2x+4x)+(7-1)`
`= 9x^4-2x^3+8x^2+2x+6`
Đề phải là `f(x)-g(x)` chứ nhỉ :v?
`f(x)-g(x)=(5x^4+4x^2-2x+7)-(4x^4-2x^3+3x^2+4x-1)`
`= 5x^4+4x^2-2x+7-4x^4+2x^3-3x^2-4x+1`
`= (5x^4-4x^4)+2x^3+(-2x-4x)+(4x^2-3x^2)+(7+1)`
`= x^4+2x^3-6x+x^2+8`
(−∞; 0) ∪ (1; +∞).