Cho hình vuông ABCD. Lấy E trên BC, F thuộc tia đối DC sao cho BE = DF
a) C/m tam giác ABE = tam giác ADF
b)tam giác EAF là hình gì vì sao
giúp em với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ABCD là hình vuông (gt)
=> AB = AD (tc)
=> góc ADC = góc ABC = 90 độ
Xét △ADF và △ABE có
AD = AB (cmt)
góc ADF = góc ABE (vì F ∈ DC, E ∈ BC)
DF = BE (gt)
=> △ADF = △ABE (c.g.c)
=> AF = AE ( 2 cạnh tương ứng)
b) Xét △EAF có AE=AF (cmt)
=> △EAF cân tại A
Giải thích các bước giải:
Xét 2 tam giác ABE và ADF
AB= AD
BE= DF
Góc ADF= gÓC ABE=90⁰
=> Tam giác ABE= Tam giác ADF( C.G.C)
=> AE= AF ( 2 cạnh tương ứng)
Tứ giác AEHF có
G Là giao điểm 2 đường chéo
AG= HG
EG=FG
Hơn nữa Có 2 cạnh kề bằng nhau
AE= AF
=> tứ giác AEHF là hình vuông
Ta có góc ECA= góc ACF= góc FCH( Nhìn canhn AE=AF=FH
=> Góc ECF= góc ECA+ góc ACH=90⁰
Góc ACH= góc ACF+góc FCH
mà góc FCH= góc ECA
=> Góc ACH= góc ACF+góc FCH=90⁰
=> tam giác ACH vuông tại C
EF thay đổi nhưng G là trọng tâm EF k thay đổi
Bài 1:
Do E là hình chiếu của D trên AB:
=) DE\(\perp\)AB tại E
=) \(\widehat{DE\text{A}}\)=900
Do F là hình chiếu của D trên AC:
=) DF\(\perp\)AC
=) \(\widehat{DFA}\)=900
Xét tứ giác AEDF có :
\(\widehat{D\text{E}F}\)=\(\widehat{E\text{A}F}\)=\(\widehat{DFA}\) (cùng bằng 900)
=) Tứ giác AEDF là hình chữ nhật
Xét hình chữ nhật AEDF có :
AD là tia phân giác của \(\widehat{E\text{A}F}\)
=) AEDF là hình vuông
a: Xét ΔABI vuông tại I và ΔKBI vuông tại I có
IB chung
IA=IK
Do đó: ΔABI=ΔKBI
b: Xét ΔABE và ΔFCE có
EA=EF
\(\widehat{AEB}=\widehat{FEC}\)
EB=EC
Do đó: ΔABE=ΔFCE
c: Ta có: ΔABE=ΔFCE
nên AB=FC
mà AB=BK
nên FC=BK
a: góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hcn
b: ΔHAB vuông tại H có HE vuông góc AB
nên AE*AB=AH^2
ΔAHC vuông tại H có HF vuông góc AC
nên AF*AC=AH^2
=>AE*AB=AF*AC
=>AE/AC=AF/AB
=>ΔAEF đồng dạng với ΔACB
a: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
c: Xét ΔEHB vuông tại H và ΔFKC vuông tại K có
EB=FC
góc EBH=góc FCK
=>ΔEHB=ΔFKC
=>EH=FK
d: Xét ΔABH và ΔACK có
AB=AC
góc ABH=góc ACK
BH=CK
=>ΔABH=ΔACK
=>AH=AK
=>ΔAHK cân tại A
mà AM là đường cao
nên AM là phân giác của góc HAK
e: Xét ΔAHE và ΔAKF có
AH=AK
góc AHE=góc AKF
HE=KF
=>ΔAHE=ΔAKF