K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2017

Chọn D 

Trong khoảng (0 ; + ∞) đồ thị hàm số y= f’( x)  nằm phía dưới trục hoành- tức là  f’( x)< 0 trên khoảng đó

=>  Hàm số  y= f(x) nghịch biến trên khoảng

11 tháng 4 2019

Chọn D 

Trong khoảng đồ thị hàm số y= f’(x) nằm phía trên trục hoành nên hàm số y= f( x)  đồng biến trên khoảng ( 0; π)

10 tháng 12 2018

Chọn C 

Trong khoảng ( 0; 1)  đồ thị hàm số y= f’( x) nằm phía dưới trục hoành nên trên khoảng này thì f’( x)< 0.

=>  hàm số f(x)  nghịch biến trên khoảng (0; 1) .

 

15 tháng 3 2017

Chọn B 

Trên khoảng đồ thị hàm số f’( x) nằm phía trên trục hoành.

=> Trên khoảng ( -∞; -1) và ( 3; + ∞) thì f’( x) > 0.

=> Hàm số đồng biến trên khoảng ( -∞; -1) và ( 3; + ∞)

10 tháng 5 2017

 

Dựa vào đồ thị hàm số f'(x) suy ra đồ thị hàm số đồng biến trên khoảng (-3;-2), đồ thị hàm số nghịch biến trên khoảng 

Chọn B.

 

2 tháng 3 2018

Chọn C

8 tháng 2 2019

28 tháng 4 2019

5 tháng 4 2019

Đáp án là D

Đồ thị f ' x  có bảng biến thiên:

max [ − 2 ; 6 ] f ( x ) = max { f ( − 1 ) , f ( 6 ) } .

14 tháng 6 2019