cho a và n là các số tự nhiên khác 0 thỏa man : a^n chia hết cho 5 . Khi đó số dư của a^10+150 khi chia cho 125 là ....
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ta có:
5^1 = 5 chia hết cho 5.
=> a = 5; n = 1.
Ta có: a^10 + 150 = 5^10 + 150 = 9765625 + 150 = 9765775.
=> 9765775 : 125 = 78126 (dư 25)
Vậy số dư của a^10 + 150 khi chia cho 125 là 25.
an sẽ chia hết cho 5 khi a = 0 hoặc 5
Ta có :
a = 5
Thay vào ta có : 510 + 150 = 78126 . 125 + 25 => số dư là 25 ( 1 )
a = 0
Thay vào ta có : 150 = 125 + 25 => số dư là 25 ( 2 )
=> Từ ( 1 ) và ( 2 ) => số dư của a10 + 150 khi chia cho 125 là 25 .
1. Vì 143 có thể phân tích thành tích các stn = cách :143=11.13=1.143
Nên ta có bảng: x+1 1 143 11 13
2.y-5 143 1 13 11
x 0 142 10 12
y 74 3 9 8
rùi cậu tự ghi kết luận nha
tick cho mình nha!
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.