Cho tam giác ABC và một điểm M nằm trên cạnh BC. Qua M ta kẻ đường thẳng song song với cạnh AB, cắt cạnh AC tại điểm E và đường thẳng song song với cạnh AC, cắt cạnh AB tại điểm D. Khi điểm M di chuyển trên cạnh BC thì trung điểm I của đoạn thẳng DE di chuyển trên đường nào?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đọc mà rối loạn tâm chí, chi co cao thủ như các thầy cô giáo mới làm đc
Xét tứ giác ADME có
AD//ME
AE//MD
Do đó: ADME là hình bình hành
Suy ra: AM cắt DE tại trung điểm của mỗi đường
=>I là trung điểm của AM
=>KHi M di chuyển trên BC thì I di chuyển trên AM
a: ΔCEF đồng dạng với ΔCAB theo tỉ số k=CE/CA
ΔADE đồng dạng với ΔABC
=>k'=AD/AB=2/5
b: \(\dfrac{C_{ADE}}{C_{ABC}}=\dfrac{AD}{AB}=\dfrac{2}{5}\)
=>\(C_{ADE}=\dfrac{2}{5}\cdot\left(5+7+9\right)=\dfrac{2}{5}\cdot21=\dfrac{42}{5}\left(cm\right)\)
ΔCEF đồng dạng với ΔCAB
=>\(\dfrac{C_{CEF}}{C_{CAB}}=\dfrac{CE}{CA}=\dfrac{3}{5}\)
=>\(C_{CEF}=\dfrac{3}{5}\cdot\left(5+7+9\right)=\dfrac{3}{5}\cdot21=\dfrac{63}{5}\left(cm\right)\)
Chứng minh được ADME là hình bình hành Þ I là trung điểm của AM. Tương tự 2A. I thuộc đường trung bình của D ABC (đường thẳng đi qua trung điểm của AB và AC)