K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

9 tháng 7 2017

Đáp án A

Gọi E  là trung điểm của B B ' .  Khi đó  B ' C / / A M E ⇒ d A M ; B ' C = d B ' C ; A M E .

Mặt khác d B ; A M E = d C ; A M E . Gọi  h = d B ; A M E

Vì tứ diện B A M E  có B A ; B M ; B E  đôi một vuông góc với nhau.

⇒ 1 h 2 = 1 B A 2 + 1 B M 2 + 1 B E 2 ⇒ 1 h 2 = 1 a 2 + 4 a 2 + 2 a 2 = 7 a 2 ⇒ h = a 7 7 ⇒ d B ' C ; A M = a 7 7 .

9 tháng 2 2018

23 tháng 10 2017

1 tháng 7 2018

NV
27 tháng 2 2023

Đặt hệ trục Oxyz vào lăng trụ, với gốc O trùng B, tia BA trùng Ox, tia BC trùng Oy, tia BB' trùng Oz. Quy ước a là 1 đơn vị độ dài.

Ta có tọa độ các điểm: \(A\left(2;0;0\right)\) ; \(B\left(0;0;0\right)\) ; \(C\left(0;2;0\right)\)\(B'\left(0;0;2\sqrt{2}\right)\)

Do M là trung điểm BC \(\Rightarrow M\left(0;1;0\right)\)

\(\overrightarrow{u_{AM}}=\overrightarrow{AM}=\left(-2;1;0\right)\)\(\overrightarrow{u_{B'C}}=\overrightarrow{B'C}=\left(0;2;-2\sqrt{2}\right)\)

\(\overrightarrow{AC}=\left(-2;2;0\right)\) (A là điểm thuộc đường AM, C là điểm thuộc đường B'C)

\(\left[\overrightarrow{u_{AM}};\overrightarrow{u_{B'C}}\right]=\left[-2\sqrt{2};-4\sqrt{2};-4\right]\)

Áp dụng công thức k/c hai đường chéo nhau:

\(d\left(AM;B'C\right)=\dfrac{\left|\left[\overrightarrow{u_{AM}};\overrightarrow{u_{B'C}}\right].\overrightarrow{AC}\right|}{\left|\left[\overrightarrow{u_{AM}};\overrightarrow{u_{B'C}}\right]\right|}=\dfrac{2a\sqrt{7}}{7}\) (sau khi đã đổi lại 1 đơn vị độ dài bằng a)

Bạn kiểm tra lại tính toán 

27 tháng 2 2023

Em chào anh ạ! Sau bao lâu anh cũng online, anh vào giúp em câu này ạ, có lời giải trên mạng em không hiểu vì sao có rất nhiều cặp số chia hết cho 3 nhưng người ta chỉ lấy 7 cặp thôi, chưa đủ anh ạ! 

https://hoc24.vn/cau-hoi/cho-tap-hop-so-a-0123456hoi-co-the-thanh-lap-bao-nhieu-so-co-4-chu-so-khac-nhau-va-chia-het-cho-3.7684280688607

25 tháng 4 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Gọi N là trung điểm của BB’, ta có: CB’ // MN nên CB’ // (AMN). Như vậy

d(BC’, AM) = d(B’, (AMN)) = d(B, (AMN))

(vì B, B’ đối xứng qua N ∈ (AMN)).

Hạ BH ⊥ (AMN), ta có d(B, (AMN)) = BH.

Nhận xét:

Tứ diện B.AMN có ba cạnh BA, BM, BN vuông góc nhau từng đôi một nên

Giải sách bài tập Toán 11 | Giải sbt Toán 11

2 tháng 4 2016

A B C B' C' A' E M

Từ giả thiết ta suy ra tam giác ABC là tam giác vuông cân tại B

Thể tích của khối lăng trụ là \(V_{ABC.A'B'C'}=AA'.BC=a\sqrt{2.}\frac{1}{2}a^2=\frac{\sqrt{2}}{2}a^3\)

Gọi E là trung điểm của BB'. Khi đó mặt phẳng (AME) song song với B'C nên khoảng cách giữa 2 đường thẳng AM, B'C bằng khoảng cách giữa B'C và mặt phẳng (AME)

Nhận thấy, khoảng cách từ B đến mặt phẳng (AME) bằng khoảng cách từ C đến mặt phẳng (AME)

Gọi h là khoảng cách từ B đến mặt phẳng (AME). Do đó tứ diện BAME có BA, BM, BE đôi một vuông góc với nhau nên :

\(\frac{1}{h^2}=\frac{1}{BA^2}+\frac{1}{BM^2}+\frac{1}{BE^2}\Rightarrow\frac{1}{h^2}=\frac{1}{a^2}+\frac{4}{a^2}+\frac{2}{a^2}=\frac{7}{a^2}\)

\(\Rightarrow h=\frac{a\sqrt{7}}{7}\)

Vậy khoảng cách giữa 2 đường thẳng B'C và AM bằng \(\frac{a\sqrt{7}}{7}\)

17 tháng 12 2017

Đáp án D

31 tháng 5 2017

Đáp án D