Tính các tổng sau:
a) 1 2 + − 2 3 + 1 6 + 3 7
b) 1 2 + 2 3 + 3 4 + 4 5 + 5 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(1+2+3+4+...+n\)
\(=\left(n+1\right)\left[\left(n-1\right):1+1\right]:2\)
\(=\left(n+1\right)\left(n-1+1\right):2\)
\(=n\left(n+1\right):2\)
\(=\dfrac{n\left(n+1\right)}{2}\)
b) \(2+4+6+..+2n\)
\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)
\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)
\(=\left(n+1\right)\left(n-1+1\right)\)
\(=n\left(n+1\right)\)
c) \(1+3+5+...+\left(2n+1\right)\)
\(=\left[\left(2n+1\right)+1\right]\left\{\left[\left(2n-1\right)-1\right]:2+1\right\}:2\)
\(=\left(2n+1+1\right)\left[\left(2n-1-1\right):2+1\right]:2\)
\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)
\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)
\(=\left(n+1\right)\left(n-1+1\right)\)
\(=n\left(n+1\right)\)
d) \(1+4+7+10+...+2005\)
\(=\left(2005+1\right)\left[\left(2005-1\right):3+1\right]:2\)
\(=2006\cdot\left(2004:3+1\right):2\)
\(=2006\cdot\left(668+1\right):2\)
\(=1003\cdot669\)
\(=671007\)
e) \(2+5+8+...+2006\)
\(=\left(2006+2\right)\left[\left(2006-2\right):3+1\right]:2\)
\(=2008\cdot\left(2004:3+1\right):2\)
\(=1004\cdot\left(668+1\right)\)
\(=1004\cdot669\)
\(=671676\)
g) \(1+5+9+...+2001\)
\(=\left(2001+1\right)\left[\left(2001-1\right):4+1\right]:2\)
\(=2002\cdot\left(2000:4+1\right):2\)
\(=1001\cdot\left(500+1\right)\)
\(=1001\cdot501\)
\(=501501\)
Bài 7:
7.1: I là trung điểm của AB
=>\(AB=2\cdot IA=4\left(cm\right)\)
7.2:
C nằm giữa A và B
=>AC+CB=AB
=>CB=10-8=2(cm)
C là trung điểm của NB
=>NC=CB=2cm
C là trung điểm của NB
=>\(NB=2\cdot NC=2\cdot2=4\left(cm\right)\)
Bài 6:
a: \(\dfrac{4}{5}=\dfrac{4\cdot6}{5\cdot6}=\dfrac{24}{30}\)
\(\dfrac{8}{15}=\dfrac{8\cdot2}{15\cdot2}=\dfrac{16}{30}\)
\(-\dfrac{3}{2}=\dfrac{-3\cdot15}{2\cdot15}=-\dfrac{45}{30}\)
b: \(2=\dfrac{2\cdot45}{45}=\dfrac{90}{45}\)
\(\dfrac{-10}{5}=\dfrac{-10\cdot9}{5\cdot9}=\dfrac{-90}{45}\)
\(\dfrac{7}{-9}=\dfrac{-7}{9}=\dfrac{-7\cdot5}{9\cdot5}=\dfrac{-35}{45}\)
c: \(\dfrac{3}{-2}=\dfrac{-3}{2}=\dfrac{-3\cdot6}{2\cdot6}=\dfrac{-18}{12}\)
\(\dfrac{5}{-6}=\dfrac{-5}{6}=\dfrac{-5\cdot2}{6\cdot2}=\dfrac{-10}{12}\)
\(\dfrac{-6}{4}=\dfrac{-6\cdot3}{4\cdot3}=\dfrac{-18}{12}\)
d: \(-\dfrac{1}{2}=\dfrac{-1\cdot15}{2\cdot15}=\dfrac{-15}{30}\)
\(\dfrac{4}{3}=\dfrac{4\cdot10}{3\cdot10}=\dfrac{40}{30}\)
\(\dfrac{6}{-5}=\dfrac{-6}{5}=\dfrac{-6\cdot6}{5\cdot6}=\dfrac{-36}{30}\)
bài 5:
a: \(\dfrac{3}{4}=\dfrac{9}{12};\dfrac{-3}{12}=\dfrac{-3}{12};\dfrac{-2}{3}=-\dfrac{8}{12};\dfrac{-1}{-6}=\dfrac{1}{6}=\dfrac{2}{12}\)
mà -8<-3<2<9
nên \(-\dfrac{8}{12}< -\dfrac{3}{12}< \dfrac{2}{12}< \dfrac{9}{12}\)
=>\(\dfrac{-2}{3}< \dfrac{-3}{12}< \dfrac{-1}{-6}< \dfrac{3}{4}\)
b: Ta có: \(\dfrac{-7}{9}=\dfrac{-28}{36};\dfrac{-1}{3}=\dfrac{-12}{36};-1=-\dfrac{36}{36}\)
mà -36<-28<-12
nên \(-1< -\dfrac{28}{36}< -\dfrac{12}{36}\)
=>\(-1< \dfrac{-7}{9}< -\dfrac{1}{3}< 0\)
\(\dfrac{5}{12}=\dfrac{15}{36};\dfrac{-1}{-4}=\dfrac{1}{4}=\dfrac{9}{36}\)
mà 9<15
nên \(0< \dfrac{1}{4}< \dfrac{5}{12}\)
=>\(-1< -\dfrac{7}{9}< -\dfrac{1}{3}< 0< \dfrac{1}{4}< \dfrac{5}{12}\)
c: \(\dfrac{-1}{-2};0;\dfrac{3}{10};1;\dfrac{-2}{-5};\dfrac{3}{-4}\)
\(-\dfrac{3}{4}< 0\)
\(\dfrac{-1}{-2}=\dfrac{1}{2}=\dfrac{5}{10};\dfrac{3}{10}=\dfrac{3}{10};1=\dfrac{10}{10};\dfrac{-2}{-5}=\dfrac{4}{10}\)
mà 3<4<5<10
nên \(\dfrac{3}{10}< \dfrac{4}{10}< \dfrac{5}{10}< \dfrac{10}{10}\)
=>\(0< \dfrac{3}{10}< \dfrac{-2}{-5}< \dfrac{-1}{-2}< 1\)
=>\(-\dfrac{3}{4}< 0< \dfrac{3}{10}< \dfrac{-2}{-5}< \dfrac{-1}{-2}< 1\)
d: \(-\dfrac{37}{150}=\dfrac{-37}{150};\dfrac{17}{-50}=\dfrac{-17}{50}=\dfrac{-51}{150}\)
\(\dfrac{23}{-25}=\dfrac{-23}{25}=\dfrac{-138}{150};\dfrac{-7}{10}=\dfrac{-105}{150};\dfrac{-2}{5}=-\dfrac{60}{150}\)
mà -138<-105<-60<-51<-37
nên \(-\dfrac{138}{150}< -\dfrac{105}{150}< -\dfrac{60}{150}< -\dfrac{51}{150}< -\dfrac{37}{150}\)
=>\(\dfrac{23}{-25}< \dfrac{-7}{10}< \dfrac{-2}{5}< \dfrac{-17}{50}< \dfrac{37}{-150}\)
`c)root{3}{4}.root{3}{1-sqrt3}.root{6}{(sqrt3+1)^2}`
`=root{3}{4(1-sqrt3)}.root{3}{1+sqrt3}`
`=root{3}{4(1-sqrt3)(1+sqrt3)}`
`=root{3}{4(1-3)}=-2`
`d)2/(root{3}{3}-1)-4/(root{9}-root{3}{3}+1)`
`=(2(root{3}{9}+root{3}{3}+1))/(3-1)-(4(root{3}{3}+1))/(3+1)`
`=root{3}{9}+root{3}{3}+1-root{3}{3}-1`
`=root{3}{9}`
`a)root{3}{8sqrt5-16}.root{3}{8sqrt5+16}`
`=root{3}{(8sqrt5-16)(8sqrt5+16)}`
`=root{3}{320-256}`
`=root{3}{64}=4`
`b)root{3}{7-5sqrt2}-root{6}{8}`
`=root{3}{1-3.sqrt{2}+3.2.1-2sqrt2}-root{6}{(2)^3}`
`=root{3}{(1-sqrt2)^3}-sqrt2`
`=1-sqrt2-sqrt2=1-2sqrt2`
Mình làm mẫu 1 bài rùi bạn tự giải những bài còn lại nha
1, 7A = 7+7^2+7^3+....+7^2008
6A = 7A - A = (7+7^2+7^3+....+7^2008)-(1+7+7^2+....+7^2007) = 7^2008-1
=> A = (7^2008-1)/6
Tk mk nha
\(A=1+7+7^2+7^3+...+7^{2007}\)
\(\Rightarrow7A=7+7^2+7^3+7^4+...+7^{2008}\)
\(\Rightarrow7A-A=\left(7+7^2+7^3+...+7^{2008}\right)-\left(1+7+7^2+...+7^{2007}\right)\)
\(\Rightarrow6A=7^{2008}-1\)
\(\Rightarrow A=\frac{7^{2008}-1}{6}\)
a) \(\dfrac{3}{5}-\dfrac{3}{5}.\dfrac{2}{3}=\dfrac{3}{5}-\left(\dfrac{3}{5}.\dfrac{2}{3}\right)=\dfrac{3}{5}-\dfrac{2}{5}=\dfrac{1}{5}\)
b) \(\dfrac{-7}{9}.\dfrac{11}{15}-\dfrac{4}{15}.\dfrac{-7}{9}-\dfrac{7}{9}=\dfrac{-7}{9}.\left(\dfrac{11}{15}-\dfrac{4}{15}\right)-\dfrac{7}{9}=\dfrac{-7}{9}.\dfrac{7}{15}-\dfrac{7}{9}=-\dfrac{49}{135}-\dfrac{7}{9}=-\dfrac{154}{135}\)
d) \(3\dfrac{1}{7}-\left(4\dfrac{1}{2}+5\dfrac{3}{7}\right)=\dfrac{22}{7}-\left(\dfrac{9}{2}+\dfrac{38}{7}\right)=\dfrac{22}{7}-\left(\dfrac{63}{14}+\dfrac{76}{14}\right)=\dfrac{22}{7}-\dfrac{139}{14}=\dfrac{44}{14}-\dfrac{139}{14}=-\dfrac{95}{14}\)
a: từ 1 đến 100 sẽ có \(\dfrac{100-1}{1}+1=100-1+1=100\left(số\right)\)
=>Sẽ có \(\dfrac{100}{2}=50\) cặp số
1-2+3-4+...+99-100
=(1-2)+(3-4)+...+(99-100)
=(-1)+(-1)+...+(-1)
=-1*50=-50
b: Sửa đề: \(2-4+6-8+...+46-48+50\)
Từ 2 đến 48 sẽ có \(\dfrac{48-2}{2}+1=24-1+1=24\left(số\right)\)
=>Sẽ có \(\dfrac{24}{2}=12\left(cặp\right)\)
\(2-4+6-8+...+46-48+50\)
\(=\left(2-4\right)+\left(6-8\right)+...+\left(46-48\right)+50\)
\(=\left(-2\right)+\left(-2\right)+...+\left(-2\right)+50\)
\(=50-2\cdot24=50-48=2\)
c: Đặt A=\(1+2-3+4+...+97+98-99+100\)
\(=\left(1+2-3+4\right)+\left(5+6-7+8\right)+...+\left(97+98-99+100\right)\)
\(=4+12+...+196\)
Từ 4 đến 196 sẽ có \(\dfrac{196-4}{8}+1=\dfrac{192}{8}+1=25\left(số\right)\)
Tổng của dãy A là: \(\left(196+4\right)\cdot\dfrac{25}{2}=\dfrac{25}{2}\cdot200=100\cdot25=2500\)
Bài 7:
Số phần kẹo Hùng đã cho Hà và Hồng là:
\(\dfrac{2}{7}+\dfrac{1}{7}=\dfrac{3}{7}\left(phần\right)\)
Hùng còn lại số phần của gói kẹo là:
\(\dfrac{6}{7}-\dfrac{3}{7}=\dfrac{3}{7}\left(phần\right)\)
1:
2 3/4
5 6/5
3 3/9
7 6/8
2:
1/3 + 2/3 + (3/4 + 1/4) = 2
=2
= 4 5/10
\(=\dfrac{2}{3}+\dfrac{1}{3}.\left(\dfrac{7}{18}\right):\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{7}{54}:\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{2}{9}\)
\(=\dfrac{8}{9}\)
a) 1 2 + − 2 3 + 1 6 + 3 7 = 3 6 + − 4 6 + 1 6 + 3 7 = 3 7
b) 1 2 + 2 8 + 3 4 + 4 5 + 5 6 = 30 60 + 40 60 + 45 60 + 48 60 + 50 60 = 71 5