Bất phương trình a x 2 + bx + c > 0 đúng với mọi x khi
A. a ≥ 0 ∆ < 0
B. a > 0 ∆ ≤ 0
C. a > 0 ∆ < 0
D. a ≥ 0 ∆ ≤ 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi a > 0 và phương trình vô nghiệm thì b2 – 4ac < 0.
Do đó: > 0
Suy ra: ax2 + bx + c = a > 0, với mọi x.
Đáp án c) nhé em.
x-2<=0 => x<=2
x2(x-2)<=0 => x=0 hoặc x-2<=0 => x<=2
Em mới học lớp 6 thôi ạ! Xin lỗi nhiều vì không giúp được!
Bài 1:
a: \(2x^2-4x+3\)
\(=2\left(x^2-2x+\dfrac{3}{2}\right)\)
\(=2\left(x^2-2x+1+\dfrac{1}{2}\right)\)
\(=2\left(x-1\right)^2+1>0\)(luôn đúng)
b: \(x^2-6x+10\)
\(=x^2-6x+9+1=\left(x-3\right)^2+1>=1\) với mọi x
c: \(x^2+2x+5=x^2+2x+1+4=\left(x+1\right)^2+4>0\)
d: \(-x^2+10x-30\)
\(=-\left(x^2-10x+30\right)\)
\(=-\left(x^2-10x+25+5\right)\)
\(=-\left(x-5\right)^2-5\le-5< 0\)
a, -2x>15 x>-15/2 c, th1 x+2>0 vs x+3 <0 suy ra x>-2 vs x<-3 . th2 x+2<0,x+3>0 suy ra x<-2 ,x>-3
b, 112-x2>0
x2<112 x<11
a) \(3x-8>5x+7\)
\(\Leftrightarrow-8>5x+7-3x\)
\(\Leftrightarrow-8>2x+7\)
\(\Leftrightarrow-8-7>2x\)
\(\Leftrightarrow-15>2x\)
\(\Leftrightarrow-\frac{15}{2}>x\)
\(\Rightarrow x< -\frac{15}{2}\)
b) \(\left(11-x\right)\left(11+x\right)>0\)
\(\Leftrightarrow x=\pm11\)
\(\Rightarrow-11< x< 11\)
c) \(\left(x+2\right)\left(x+3\right)< 0\)
\(\Leftrightarrow x=-2;-3\)
\(\Rightarrow-3< x< -2\)
1a
x^2-8x<0
<=> x(x-8)<0
th1: x<0 và x-8>0
x<0 và x>8
<=> 8<x<0 ( vô lý)
th2: x>0 và x-8<0
<=> x>0 và x<8
<=> 0<x<8( tm)
vậy........
a) \(x^2-8x< 0\)
\(\Leftrightarrow x\left(x-8\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\x-8< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x< 0\\x-8>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\x< 8\end{cases}}\) hoặc \(\hept{\begin{cases}x< 0\\x>8\end{cases}}\) (loại)
\(\Leftrightarrow0< x< 8\)
b) \(x^2< 6x-5\)
\(\Leftrightarrow x^2-6x+5< 0\)
\(\Leftrightarrow x^2-x-5x+5< 0\)
\(\Leftrightarrow x\left(x-1\right)-5\left(x-1\right)< 0\)
\(\Leftrightarrow\left(x-1\right)\left(x-5\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x-1>0\\x-5< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x-1< 0\\x-5>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>1\\x< 5\end{cases}}\) hoặc \(\hept{\begin{cases}x< 1\\x>5\end{cases}}\) (loại)
\(\Leftrightarrow1< x< 5\)
c) \(\frac{x-3}{x-2}< 0\)
\(\Leftrightarrow\hept{\begin{cases}x-3>0\\x-2< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x-3< 0\\x-2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>3\\x< 2\end{cases}}\) (loại) hoặc \(\hept{\begin{cases}x< 3\\x>2\end{cases}}\)
\(\Leftrightarrow2< x< 3\)
d) \(\frac{x+1}{x-3}>2\) (ĐK: \(x\ne3\) )
\(\Leftrightarrow\frac{x+1}{x-3}-2>0\)
\(\Leftrightarrow\frac{x+1-2\left(x-3\right)}{x-3}>0\)
\(\Leftrightarrow\frac{-x+7}{x-3}>0\)
\(\Leftrightarrow\hept{\begin{cases}-x+7>0\\x-3>0\end{cases}}\) hoặc \(\hept{\begin{cases}-x+7< 0\\x-3< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-x>-7\\x>3\end{cases}}\) hoặc \(\hept{\begin{cases}-x< -7\\x< 3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x< 7\\x>3\end{cases}}\) hoặc \(\hept{\begin{cases}x>7\\x< 3\end{cases}}\) (loại)
\(\Leftrightarrow3< x< 7\)
Đáp án C.
Áp dụng lý thuyết về “ Dấu của tam thức bậc hai” ta thấy đáp án C là đáp án đúng.