Làm tính nhân phân thức: 4 x + 8 ( x - 10 ) 3 . 2 x - 20 ( x + 2 ) 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Cách 1 : \(x^2+5x+6=x^2+2x+3x+6=\left(x+2\right)\left(x+3\right)\)
Cách 2 : \(x^2+5x+6=x^2+2.\frac{5}{2}x+\frac{25}{4}-\frac{25}{4}+6\)
\(=\left(x+\frac{5}{2}\right)^2-\frac{1}{4}=\left(x+2\right)\left(x+3\right)\)
b, Cách 1 : \(x^2-x-6=x^2+2x-3x-6=\left(x-3\right)\left(x+2\right)\)
Cách 2 : \(x^2-x-6=x^2-x+\frac{1}{4}-\frac{1}{4}-6=\left(x-\frac{1}{2}\right)^2-\frac{25}{4}=\left(x-3\right)\left(x+2\right)\)
c, Cách 1 : \(x^2+6x+8=x^2+4x+2x+8=\left(x+2\right)\left(x+4\right)\)
Cách 2 : \(x^2+6x+8=x^2+6x+9-1=\left(x+3\right)^2-1=\left(x+2\right)\left(x+4\right)\)
d, Cách 1 : \(x^2-2x-8=x^2+2x-4x-8=\left(x-4\right)\left(x+2\right)\)
Cách 2 : \(x^2-2x-8=x^2-2x+1-9=\left(x-1\right)^2-9=\left(x-4\right)\left(x+2\right)\)
Bài 1:
a: x+1/2=5/6
nên x=5/6-1/2=1/3
b: x+1/4=3/4
nên x=3/4-1/4=2/4=1/2
c: x+3/10=1/2
nên x=1/2-3/10=5/10-3/10=1/5
d: x+1/4=3/8
nên x=3/8-1/4=3/8-2/8=1/8
(x^10+y^10)(x^2+y^2)-(x^8+y^8)(x^4+y^4)
=x^12+x^10y^2+y^10x^2+y^12-x^12-x^8y^4-x^4y^8-y^12
=x^10y^2+y^10x^2-x^8y^4-x^4y^8
=x^2y^2(x^8+y^8-x^6y^2-x^2y^6)
=x^2y^2[x^6(x^2-y^2)+y^6(y^2-x^2)]
=x^2y^2[x^6(x-y)(x+y)-y^6(x-y)(x+y)]
=x^2y^2(x^6-y^6)(x-y)(x+y)
=x^2y^2(x-y)(x+y)(x^2+xy+y^2)(x^2-xy+y^2)(x-y)(x+y)
=x^2y^2(x-y)^2(x+y)^2(x^2+xy+y^2)(x^2-xy+y^2)
1) 1/3 x 1/2 x 3/7 = 3/42 = 1/14
2) 5/4 x 1/3 +1/7 = 5/12 + 1/7 = 35/84 + 12/84 = 47/84
3) 8 x ( 8/9 - 2/3 ) = 8 x 2/9 = 16/9
4) 5/6 x 48/20 x 1/2 = 240/240 = 1
5) ( 2/5 + 3/4 ) + 8 = 23/20 + 8 = 23//20 + 160/20 = 183/20
6) 10 x ( 1/2 - 1/5 ) = 10 x 3/10 = 10/1 x 3/10 = 30/10 = 3
1) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt \(x^2+7x=t\)
\(\Rightarrow BT=\left(t+10\right)\left(t+12\right)-24\)
\(=t^2+22x+96=\left(t+11\right)^2-25\ge-25\)
Vậy GTNN của bt là - 25\(\Leftrightarrow x^2+7x+11=0\)
\(\Delta=7^2-4.11=5\)
\(\orbr{\begin{cases}x_1=\frac{-22+\sqrt{5}}{2}\\x_2=\frac{-22-\sqrt{5}}{2}\end{cases}}\)
2) \(\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-7\right)-20\)
\(=\left(x-1\right)\left(x-7\right)\left(x-3\right)\left(x-5\right)-20\)
\(=\left(x^2-8x+7\right)\left(x^2-8x+15\right)-20\)
Đặt \(x^2-8x=t\)
\(\RightarrowĐT=\left(t+7\right)\left(t+15\right)-20\)
\(=t^2+22t+85=\left(t+11\right)^2-36\ge-36\)
Vậy GTNN của bt là - 36\(\Leftrightarrow x^2-8x+11=0\)
\(\Delta=\left(-8\right)^2-4.11=20\)
\(\orbr{\begin{cases}x_1=\frac{-22-\sqrt{20}}{2}\\x_2=\frac{-22+\sqrt{20}}{2}\end{cases}}\)