Cho tứ giác ABCD nội tiếp đường tròn (O). Trên đường chéo BD lấy điểm E sao cho ∠ DAE = ∠ BAC . Chứng minh: ∆ ADE ~ ∆ ACE, ∆ ABE ~ ∆ ACD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét (O) có
ΔADB nội tiếp đường tròn(A,D,B∈(O))
AB là đường kính
Do đó: ΔADB vuông tại D(Định lí)
⇒\(\widehat{ADB}=90^0\)
hay \(\widehat{ADE}=90^0\)
Xét tứ giác ADEH có
\(\widehat{ADE}\) và \(\widehat{AHE}\) là hai góc đối
\(\widehat{ADE}+\widehat{AHE}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ADEH là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a) Xét (O) có
ΔACD nội tiếp đường tròn(A,C,D\(\in\)(O))
AD là đường kính(gt)
Do đó: ΔACD vuông tại C(Định lí)
Suy ra: AC\(\perp\)CD tại C
hay \(EC\perp CD\) tại C
Xét tứ giác ECDF có
\(\widehat{EFD}\) và \(\widehat{ECD}\) là hai góc đối
\(\widehat{EFD}+\widehat{ECD}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ECDF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Cô hướng dẫn nhé. :)
Tứ giác AIDE nội tiếp đường tròn đường kính AI.
b. Do câu a ta có AIDE là tứ giác nội tiếp nên gó IDE = góc IAE. Lại có góc IAE = góc CDB. Từ đó suy ra DB là tia phân giac góc CDE.
c. Ta thấy góc CDE = 2 góc CAB (Chứng minh b). Lại có góc COB = 2 góc CAB. Từ đó suy ra góc CDE = góc COB. Hay OEDC là tứ giác nội tiếp ( Góc ngoài ở đỉnh bằng góc đối diện )
Chúc em học tốt ^^