Tìm m để hàm số y = m x + 2 luôn nghịch biến trong khoảng xác định của nó.
A. m > 0
B. m < 0
C. m = 0
D. m > -2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án: A.
Hàm số nghịch biến trên từng khoảng ( - ∞ ; -m), (-m; + ∞ ) khi và chỉ khi
⇔ - m 2 + 5m - 4 < 0
⇔
Đáp án: A.
Hàm số nghịch biến trên từng khoảng (- ∞ ; -m), (-m; + ∞ ) khi và chỉ khi
⇔ - m 2 + 5m - 4 < 0
⇔
Đáp án: D.
⇔ ∆ ′ = 2m + 5 ≤ 0
dấu “=” xảy ra nhiều nhất tại hai điểm, nên hàm số nghịch biến trên các khoảng (- ∞ ; 2)
và (2; + ∞ ) khi m ≤ −5/2.
Đáp án: D.
⇔ Δ′ = 2m + 5 ≤ 0
dấu “=” xảy ra nhiều nhất tại hai điểm, nên hàm số nghịch biến trên các khoảng (- ∞ ; 2)
và (2; + ∞ ) khi m ≤ −5/2.
Ta có \(y'=-3x^2+6mx\)
Để hàm số đã cho nghịch biến trên \(ℝ\) thì
\(f\left(x\right)=-3x^2+6mx\le0,\forall x\inℝ\)
Thế thì \(\Delta'=9m^2-\left(-3\right).0\le0\) \(\Leftrightarrow m=0\)
Vậy để hàm số đã cho nghịch biến trên \(ℝ\) thì \(m=0\)
a.
Hàm số nghịch biến khi \(x< 0\Rightarrow-3m-2>0\Rightarrow m< -\dfrac{2}{3}\)
b.
Do \(a=m^2-2m+3=\left(m-1\right)^2+2>0;\forall m\)
\(\Rightarrow\) Hàm đồng biến khi \(x>0\) và nghịch biến khi \(x< 0\)
c.
Hàm đồng biến khi \(x>0\Rightarrow2m+3>0\)
\(\Rightarrow m>-\dfrac{3}{2}\)
Tập xác định
Hàm số nghịch biến trên từng khoảng
khi và chỉ khi
Suy ra m 2 - 4 < 0 hay -2 < m < 2. Chọn đáp án C.
Chọn D.
Để hàm số đã cho nghịch biến trên khoảng xác định:
⇔ y' < 0, ∀ x ∈ D ⇔ m2 + 3m + 2 < 0 ⇔ -2 < m < -1
Vậy không có số nguyên m nào thuộc khoảng (-2;-1).
Tập xác định : D= R\ {-2}.
Lấy x 1 ≠ x 2 , khi đó ta có:
f x 2 - f x 1 x 2 - x 1 = m x 2 + 2 - m x 1 + 2 x 2 - x 1 = m x 1 + 2 - m x 2 + 2 x 2 + 2 . x 1 + 2 x 2 - x 1 = m x 1 - x 2 x 2 + 2 x 1 + 2 x 2 - x 1 = - m x 2 + 2 x 1 + 2
Với x 1 ; x 2 thuộc - 2 ; + ∞ hoặc cùng thuộc - ∞ ; - 2 thì x 1 + 2 x 2 + 2 > 0
Vì vậy f(x) nghịch biến khi f x 2 - f x 1 x 2 - x 1 < 0 ⇔ - m < 0 ⇔ m > 0 .