Cho tứ diện đều ABCD có cạnh bằng 4. Tính diện tích xung quanh S x q của hình trụ có một đường tròn đáy là đường tròn nội tiếp tam giác BCD và chiều cao bằng chiều cao của tứ diện ABCD.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
r = G H = 1 3 C H = 1 3 . 4 . 3 2 = 2 3 3
h = A G = A C 2 - C G 2 = 4 2 - 4 . 3 2 . 2 3 2 = 4 6 3
S x q = 2 πrl = 2 π . 2 3 3 . 4 6 3 = 16 2 3 π
Đáp án cần chọn là A
Đáp án A
Ta có r t r = G H = 1 3 C H = 2 3 3
h t r u = A G = A C 2 - C G 2 = 4 6 3
Đáp án A.
Dựng hình như hình vẽ bên ta có:
Bán kính đường tròn nội tiếp đáy:
r = H M = 1 3 B M = 4 3 6
Chiều cao:
h = A H = A B 2 − B H 2 = 4 2 − 4 3 3 2 = 4 6 3
Do đó S x q T = 2 π h = 16 π 2 3 .
Đáp án D
Gọi r là bán kính đường tròn đáy và h là chiều cao tứ diện, ta có Sxq = 2 π .r.h.
Nếu gọi M là trung điểm CD và G là trọng tâm tam giác BCD thì ta có
Vậy
Đáp án D
Gọi r là bán kính đường tròn đáy và h là chiều cao tứ diện, ta có S x q = 2 π . r . h
Nếu gọi M là trung điểm CD và G là trọng tâm tam giác BCD thì ta có