Cho tứ diện OABC có OA,OB,OC đôi một tạo với nhau góc và OA = OB= a, OC =2a. Côsin góc giữa đường thẳng OC và mặt phẳng (ABC) bằng
A. 5 3
B. 1 3
C. 2 3
D. 2 2 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Theo giả thiết OA, OB, OC đôi một vuông góc với nhau nên O A ⊥ O B C , O C là hình chiếu của AC lên mặt phẳng O B C . Do đó, A C O ^ = 60 ° , O A là chiều cao của tứ diện OABC. Xét tam giác vuông AOC có tan 60 ° = O A O C với O A = a ⇒ O C = O A tan 60 ° = a 3 = a 3 3 ; O B = 2 a
Ta có S O B C = 1 2 O B . O C = 1 2 2 a . a 3 3 ; V O A B C = 1 3 O A . S O B C = 1 3 a . a 2 3 3 = a 3 3 9
Đáp án C
Gọi H là hình chiếu vuông góc của O lên mặt phẳng (ABC), có
Khi đó
Đáp án D