Hai đường thẳng AB, CD cắt nhau tại O tạo thành bốn góc không kể góc bẹt. Biết A O C ^ + B O D ^ = 100 ° . Tính số đo của mỗi góc tạo thành.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Bài giải
Ta có : \(\widehat{AOC}=\widehat{BOD}\) ( hai góc đối đỉnh ) mà \(\widehat{AOC}+\widehat{BOD}=100^o\)\(\Rightarrow\text{ }\widehat{AOC}=\widehat{BOD}=\frac{1}{2}\cdot100^o=50^o\)
\(\widehat{AOD}=\widehat{BOC}\) ( hai góc đối đỉnh ) mà \(\widehat{AOD}\) kề bù với \(\widehat{BOD}\) nên \(\widehat{AOD}+\widehat{BOD}=180^o\)
\(\Rightarrow\text{ }\widehat{AOD}+50^o=180^o\text{ }\Rightarrow\text{ }\widehat{AOD}=130^o\)
\(\Rightarrow\text{ }\widehat{AOD}=\widehat{BOC}=130^o\)
Bài 2 : Bài giải
Ta có:
\(\widehat{MOP}=\widehat{NOQ}\) ( hai góc đối đỉnh )
\(\widehat{NOP}=\widehat{MOQ}\)( hai góc đối đỉnh )
Ta lại có : \(\widehat{MOP}\text{ và }\widehat{NOP}\) là 2 góc kề bù nên \(\widehat{MOP}+\widehat{NOP}=180^o\)
Mà \(\widehat{NOP}=\frac{2}{3}\widehat{MOP}\) nên \(\widehat{MOP}+\frac{2}{3}\widehat{MOP}=180^o\)
\(\Rightarrow\text{ }\frac{5}{3}\widehat{MOP}=180^o\text{ }\Rightarrow\text{ }\widehat{MOP}=108^o\)
\(\Rightarrow\text{ }\widehat{NOP}=\frac{2}{3}\cdot108^o=72^o\)
\(\Rightarrow\text{ }\widehat{MOP}=\widehat{NOQ}=108^o\)
\(\Rightarrow\text{ }\widehat{NOP}=\widehat{MOQ}=72^o\)
Số đo các góc còn lại lần lượt là \(120^0;120^0;60^0\)
góc BOD=70 độ
=>góc DOM=70/2=35 độ
=>góc COM=180-35=145 độ
TH1: \(\widehat{AOC}+\widehat{AOD}+\widehat{BOD}=230o\)
Mà \(\widehat{AOC}=\widehat{BOD}\) (2 góc đối đỉnh)
=> \(2.\widehat{AOC}+\widehat{AOD}=230o\)
Mà \(\widehat{AOC}+\widehat{AOD}=180o\) (2 góc kề bù)
=> \(\left\{{}\begin{matrix}\widehat{AOC}=\widehat{BOD}=50o\\\widehat{AOD}=\widehat{BOC}=130o\end{matrix}\right.\)
TH2: \(\widehat{AOD}+\widehat{BOD}+\widehat{BOC}=230o\)
Mà \(\widehat{AOD}=\widehat{BOC}\) (2 góc đối đỉnh)
=> \(2.\widehat{AOD}+\widehat{BOD}=230o\)
Mà \(\widehat{AOD}+\widehat{BOD}=180o\)
=> \(\left\{{}\begin{matrix}\widehat{AOD}=\widehat{BOC}=50o\\\widehat{BOD}=\widehat{AOC}=130o\end{matrix}\right.\)
vô lí do \(\widehat{AOC}>\widehat{BOC}\)
Hai góc NOP và MOP kề bù nên N O P ^ + M O P ^ = 180 ° mà N O P ^ = 2 3 M O P ^ nên N O P ^ = 180 ° .2 2 + 3 = 72 ° ; M O P ^ = 180 ° − 72 ° = 108 ° .
Suy ra M O Q ^ = N O P ^ = 72 ° (hai góc đối đỉnh); N O Q ^ = M O P ^ = 108 ° (hai góc đối đỉnh)
Ta có: A O C ^ = B O D ^ (hai góc đối đỉnh) mà A O C ^ + B O D ^ = 100 ° nên A O C ^ = B O D ^ = 100 ° : 2 = 50 ° .
Hai góc AOC và BOC kề bù nên B O C ^ = 180 ° − 50 ° = 130 ° .
Do đó A O D ^ = B O C ^ = 130 ° (hai góc đối đỉnh).