K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2016

\(S=1+\frac{1}{2}+\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{101}{2}\)

\(S=1+\frac{1+2+3+4+...+101}{2}\)

\(S=1+\frac{10201}{2}=...\)

tick cho mink nha!

2 tháng 4 2023

1+1=3 :)))

10 tháng 10 2017

345,345678

8 tháng 8 2016

Xét : \(\frac{1}{100}-\frac{1}{n^2}=\frac{n^2-100}{100n^2}=\frac{\left(n-10\right)\left(n+10\right)}{100n^2}\)

Áp dụng , đặt biểu thức cần tính là A , ta có : 

\(A=\left(\frac{1}{100}-\frac{1}{1^2}\right)\left(\frac{1}{100}-\frac{1}{2^2}\right)\left(\frac{1}{100}-\frac{1}{3^2}\right)...\left(\frac{1}{100}-\frac{1}{20^2}\right)\)

\(=\frac{\left(1-10\right)\left(1+10\right)}{100.1^2}.\frac{\left(2-10\right)\left(2+10\right)}{100.2^2}.\frac{\left(3-10\right)\left(3+10\right)}{100.3^2}...\frac{\left(10-10\right)\left(10+10\right)}{100.10^2}...\frac{\left(20-10\right)\left(20+10\right)}{100.20^2}\)

Nhận thấy trong A có một nhân tử (10-10) = 0 nên A = 0

làm thế thì hơi dài đấy Hoàng Lê Bảo Ngọc

ta nhận thấy trong biểu thức chứa thừa số \(\frac{1}{100}-\left(\frac{1}{10}\right)^2=\frac{1}{100}-\frac{1}{100}=0\)

=>biểu thức ấy =0

27 tháng 7 2015

tui ko nói vậy, mà cậu ghi gì tui không hiểu

12 tháng 2 2017

\(S=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{100}\left(1+2+3+...+100\right)\)

Ta có công thứ \(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)

Áp dụng vào bài toán ta được :

\(=1+\frac{1}{2}\cdot\frac{2.3}{2}+\frac{1}{3}\cdot\frac{3.4}{2}+....+\frac{1}{100}\cdot\frac{100.101}{2}\)

\(=1+\frac{3}{2}+\frac{4}{2}+...+\frac{101}{2}\)

\(=\frac{2+3+4+...+101}{2}=\frac{\frac{101.102}{2}-1}{2}=2575\)

5 tháng 12 2017

ta có: \(M\)là tích của 99 số,mà 99 số đều âm

\(\Rightarrow M< 0\)

17 tháng 3 2020

A=(1/100- 1^2). (1/100-(1/2)^2).....(1/100- (1/510)^2).....(1/100-(1/20)^2)

A=(1/100- 1^2). (1/100-(1/2)^2).....(1/100- 1/100).....(1/100-(1/20)^2)

A=(1/100- 1^2). (1/100-(1/2)^2).....0.....(1/100-(1/20)^2)

A=0

Mình ko biết gõ ngoặc vuông bạn thông cảm nha! Chúc bạn học tốt!!!