Cho các số thực x, y thỏa mãn x 2 + y 2 = 1 .
Kí hiệu S = x + y , khi đó khẳng định nào sau đây là đúng?
A. S ≤ - 2
B. S ≥ 2
C. - 2 ≤ S ≤ 2
D. - 2 ≤ S ≤ 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left(\dfrac{x}{6};\dfrac{y}{3};\dfrac{z}{2}\right)=\left(a;b;c\right)\Rightarrow2^{6a}+4^{3b}+8^{2c}=4\)
\(\Leftrightarrow64^a+64^b+64^c=4\)
Áp dụng BĐT Cô-si:
\(4=64^a+64^b+64^c\ge3\sqrt[3]{64^{a+b+c}}\Rightarrow64^{a+b+c}\le\dfrac{64}{27}\)
\(\Rightarrow a+b+c\le log_{64}\left(\dfrac{64}{27}\right)\Rightarrow M=log_{64}\left(\dfrac{64}{27}\right)\)
Lại có: \(x;y;z\ge0\Rightarrow a;b;c\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}64^a\ge1\\64^b\ge1\\64^c\ge1\end{matrix}\right.\) \(\Rightarrow\left(64^b-1\right)\left(64^c-1\right)\ge0\)
\(\Rightarrow64^{b+c}+1\ge64^b+64^c\) (1)
Lại có: \(b+c\ge0\Rightarrow64^{b+c}\ge1\Rightarrow\left(64^a-1\right)\left(64^{b+c}-1\right)\ge0\)
\(\Rightarrow64^{a+b+c}+1\ge64^a+64^{b+c}\) (2)
Cộng vế (1);(2) \(\Rightarrow4=64^a+64^b+64^c\le64^{a+b+c}+2\)
\(\Rightarrow64^{a+b+c}\ge2\Rightarrow a+b+c\ge log_{64}2\)
\(\Rightarrow N=log_{64}2\)
\(\Rightarrow T=2log_{64}\left(\dfrac{64}{27}\right)+6log_{64}\left(2\right)\approx1,4\)
Đáp án C
Đặt 3 x = 5 y = 15 2017 x + y − z = t ⇒ x = log 3 t y = log 5 t .
Đồng thời :
2017 x + y − z = log 15 t = 1 log t 15 = 1 log t 3 + log t 5 = 1 1 x + 1 y = x y x + y ⇒ x y + y z + z x = 2017.
Ta có :
0 ≤ x - y 2 ⇔ 0 ≤ x 2 - 2 x y + y 2 ⇔ 2 x y ≤ x 2 + y 2 ⇔ x 2 + y 2 + 2 x y ≤ x 2 + y 2 + x 2 + y 2 ⇔ x + y 2 ≤ 2 x 2 + y 2 ⇔ x + y 2 ≤ 2 ⇔ - 2 ≤ x + y ≤ 2
Do đó - 2 ≤ S ≤ 2 .
Đề sai rồi thì đó là S hần thuộc từ khoảng âm căn 2 đến căn hai chứ bạn. Sử dụng bdt bunhiakopski.
Đó x^2 + y^2 = 2 mới đc như thế kìa.