K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2018

Cách 1: Với mọi x thì  x ≥ x . Đáp án là D.

 

Cách 2: Dùng cách loại trừ:

+ Lấy x > 0 thì x = x  nên bất đẳng thức  x > x  không đúng.

 

+ Lấy x < 0 thì  x = - x  nên bất đẳng thức  x > - x  không đúng.

 

+ Ta có  x 2 = x 2  với mọi x nên bất đẳng thức  x 2 > x 2  không đúng.

 

Đáp án là D.

24 tháng 10 2019

11 tháng 7 2019

Đáp án D

5 tháng 2 2018

Đáp án D

13 tháng 11 2016

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right) \Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2+2\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)(1)

Đặt \(t=\frac{x}{y}+\frac{y}{x}\), (1) trở thành \(t^2-3t+2\ge0\)(2)

(2) đúng khi \(t\le1\)hoặc \(t\ge2\), chú ý rằng theo bất đẳng thức AM - GM, ta có:

\(t=\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{xy}{xy}}=2\)với x,y > 0 

Do đó (2) đúng, suy ra (1) đúng ( đpcm ).

12 tháng 11 2016

Đề đúng không thế bạn. 3 hay là 2 thế

14 tháng 10 2019

Đáp án B

Đặt

Ta có:

Đặt .

là hàm số đồng biến trên .

Khi đó

1 tháng 10 2019

Chọn đáp án C

Vậy số thực a thỏa mãn yêu cầu bài toán là:  a ∈ ( 6 ; 7 ]

8 tháng 2 2017

Đáp án A.

Đặt t = x 2 − x + 1 = x − 1 2 2 + 3 4 ≥ 3 4  

Khi đó BPT trở thành

f t = t + 1 + a ln t ≥ 0  

Ta có: f ' t = + ∞ ;   f 3 4 = 3 4 + a ln 3 4  

Với a > 0 ⇒ f t  đồng biến trên

3 4 ; + ∞ ⇒ f t ≥ 0 ∀ t ∈ 3 4 ; + ∞ ⇔ M i n 3 4 ; + ∞ f t = 7 4 + a  

⇔ a ln 3 4 ≥ − 7 4 ⇔ a ≤ − 7 4 ln 3 4 ≈ 6 , 08.  

Vì đề bài yêu cầu tìm số thực lớn nhất

nên suy ra a ∈ 6 ; 7 .