Bất đẳng thức nào sau đây là đúng với mọi số thực x?
A. x > x
B. x > - x
C. x 2 > x 2
D. x ≥ x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right) \Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2+2\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)(1)
Đặt \(t=\frac{x}{y}+\frac{y}{x}\), (1) trở thành \(t^2-3t+2\ge0\)(2)
(2) đúng khi \(t\le1\)hoặc \(t\ge2\), chú ý rằng theo bất đẳng thức AM - GM, ta có:
\(t=\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{xy}{xy}}=2\)với x,y > 0
Do đó (2) đúng, suy ra (1) đúng ( đpcm ).
Đáp án B
Đặt
Ta có:
Đặt .
là hàm số đồng biến trên .
Khi đó
Chọn đáp án C
Vậy số thực a thỏa mãn yêu cầu bài toán là: a ∈ ( 6 ; 7 ]
Đáp án A.
Đặt t = x 2 − x + 1 = x − 1 2 2 + 3 4 ≥ 3 4
Khi đó BPT trở thành
f t = t + 1 + a ln t ≥ 0
Ta có: f ' t = + ∞ ; f 3 4 = 3 4 + a ln 3 4
Với a > 0 ⇒ f t đồng biến trên
3 4 ; + ∞ ⇒ f t ≥ 0 ∀ t ∈ 3 4 ; + ∞ ⇔ M i n 3 4 ; + ∞ f t = 7 4 + a
⇔ a ln 3 4 ≥ − 7 4 ⇔ a ≤ − 7 4 ln 3 4 ≈ 6 , 08.
Vì đề bài yêu cầu tìm số thực lớn nhất
nên suy ra a ∈ 6 ; 7 .
Cách 1: Với mọi x thì x ≥ x . Đáp án là D.
Cách 2: Dùng cách loại trừ:
+ Lấy x > 0 thì x = x nên bất đẳng thức x > x không đúng.
+ Lấy x < 0 thì x = - x nên bất đẳng thức x > - x không đúng.
+ Ta có x 2 = x 2 với mọi x nên bất đẳng thức x 2 > x 2 không đúng.
Đáp án là D.