K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2018

Ta có A H → = a + 3 ; b  ;   B C → = − 1 ; 6 B H → = a − 3 ; b  ;  A C → = 5 ; 6 .  

Từ giả thiết, ta có:

               A H → . B C → = 0 B H → . A C → = 0 ⇔ a + 3 . − 1 + b .6 = 0 a − 3 .5 + b .6 = 0 ⇔ a = 2 b = 5 6 ⇒ a + 6 b = 7.

 Chọn C.

28 tháng 7 2018

Tọa độ trọng tâm G x G ; y G  là x G = 1 − 2 + 5 3 = 4 3 y G = 3 + 4 + 3 3 = 10 3 .  

Chọn D.

11 tháng 9 2019

Gọi I(a; b) là tâm đường tròn ngoại tiếp tam giác ABC.

A I 2 = B I 2 A I 2 = C I 2 ⇔ a − 0 2 + b − 2 2 = a + 2 2 + b − 8 2 a − 0 2 + b − 2 2 = a + 3 2 + b − 1 2

⇔ a 2 + b 2 − 4 b + 4 = a 2 + 4 a + 4 + b 2 − 16 b + 64 a 2 + b 2 − 4 b + 4 = a 2 + 6 a + 9 + b 2 − 2 b + 1

4 a − 12 b = − 64 6 a + 2 b = − 6 ⇔ a − 3 b = − 16 3 a + b = − 3

⇔ a = − 5 2 b = 9 2

Chọn B.

25 tháng 3 2019

NV
3 tháng 5 2021

\(\overrightarrow{BC}=\left(-4;-4\right)=-4\left(1;1\right)\)

Phương trình BC: \(1\left(x-4\right)-1\left(y-1\right)=0\Leftrightarrow x-y-3=0\)

Phương trình AH qua A và vuông góc BC:

\(1\left(x-1\right)+1\left(y-2\right)=0\Leftrightarrow x+y-3=0\)

H là giao điểm AH và BC nên tọa độ thỏa mãn: \(\left\{{}\begin{matrix}x-y-3=0\\x+y-3=0\end{matrix}\right.\) \(\Rightarrow H\left(3;0\right)\)

\(\Rightarrow\overrightarrow{AH}=\left(2;-2\right)\Rightarrow AH=2\sqrt{2}\)

15 tháng 2 2018

Ta có A H → = a + 3 ; b  ;   B C → = − 1 ; 6 B H → = a − 3 ; b  ;  A C → = 5 ; 6 .  

Từ giả thiết, H là trực tâm tam giác ABC nên ta có:

      A H → . B C → = 0 B H → . A C → = 0 ⇔ a + 3 . − 1 + b .6 = 0 a − 3 .5 + b .6 = 0 ⇔ a = 2 b = 5 6 ⇒ a + 6 b = 7.  

Chọn C.

4 tháng 1 2017

A B → = 3 ; 12 ,   A C → = 4 ; − 1 ⇒ ( A B )   ⃗ . ( A C )   ⃗ = 3 . 4 + 12 . ( - 1 ) = 0   ⇒ ∆ A B C vuông tại A. Trực tâm của tam giác là đỉnh A. Chọn B

6 tháng 2 2017

vecto AH=(x+2;y-4); vecto BC=(-6;-2)

vecto BH=(x-4;y-1); vecto AC=(0;-5)

Theo đề, ta có: -6(x+2)-2(y-4)=0 và 0(x-4)-5(y-1)=0

=>y=1 và -6(x+2)=2(y-4)=2*(1-4)=-6

=>x+2=1 và y=1

=>x=-1 và y=1