K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2019

Chọn D

21 tháng 6 2017

f(x) = (3x2 – 4x)(2x2 – x – 1)

+ Tam thức 3x2 – 4x có hai nghiệm x = 0 và x = 4/3, hệ số a = 3 > 0.

Do đó 3x2 – 4x mang dấu + khi x < 0 hoặc x > 4/3 và mang dấu – khi 0 < x < 4/3.

+ Tam thức 2x2 – x – 1 có hai nghiệm x = –1/2 và x = 1, hệ số a = 2 > 0

Do đó 2x2 – x – 1 mang dấu + khi x < –1/2 hoặc x > 1 và mang dấu – khi –1/2 < x < 1.

Ta có bảng xét dấu:

Giải bài 2 trang 105 SGK Đại Số 10 | Giải toán lớp 10

Kết luận:

f(x) > 0 ⇔ x ∈ (–∞; –1/2) ∪ (0; 1) ∪ (4/3; +∞)

f(x) = 0 ⇔ x ∈ {–1/2; 0; 1; 4/3}

f(x) < 0 ⇔ x ∈ (–1/2; 0) ∪ (1; 4/3)

8 tháng 2 2019

Giải sách bài tập Toán 10 | Giải sbt Toán 10

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) \(f\left( x \right) = 2{x^2} + 4x + 2\) có \(\Delta  = 0\), có nghiệm kép là \({x_1} = {x_2} =  - 1\)

và \(a = 2 > 0\)

Ta có bảng xét dấu như sau:

 

Vậy \(f\left( x \right)\) dương với mọi \(x \ne  - 1\)

b) \(f\left( x \right) =  - 3{x^2} + 2x + 21\) có \(\Delta  = 256 > 0\), hai nghiệm phân biệt là \({x_1} =  - \frac{7}{3};{x_2} = 3\)

và \(a =  - 3 < 0\)

Ta có bảng xét dấu như sau:

 

Vậy \(f\left( x \right)\) dương với \(x \in \left( { - \frac{7}{3};3} \right)\) và âm khi \(x \in \left( { - \infty ; - \frac{7}{3}} \right) \cup \left( {3; + \infty } \right)\)

c) \(f\left( x \right) =  - 2{x^2} + x - 2\) có \(\Delta  =  - 15 < 0\), tam thức vô nghiệm

và \(a =  - 2 < 0\)

Ta có bảng xét dấu như sau:

 

Vậy \(f\left( x \right)\) âm với mọi \(x \in \mathbb{R}\)

d) \(f\left( x \right) =  - 4x\left( {x + 3} \right) - 9 =  - 4{x^2} - 12x - 9\) có \(\Delta  = 0\), tam thức có nghiệm kép \({x_1} = {x_2} =  - \frac{3}{2}\) và \(a =  - 4 < 0\)

Ta có bảng xét dấu như sau

 

Vậy \(f\left( x \right)\) âm với mọi \(x \ne  - \frac{3}{2}\)

e) \(f\left( x \right) = \left( {2x + 5} \right)\left( {x - 3} \right) = 2{x^2} - x - 15\) có \(\Delta  = 121 > 0\), có hai nghiệm phân biệt \({x_1} =  - \frac{5}{2};{x_2} = 3\) và có \(a = 2 > 0\)

Ta có bảng xét dấu như sau

 

Vậy \(f\left( x \right)\) âm với \(x \in \left( { - \frac{5}{2};3} \right)\) và dương khi \(x \in \left( { - \infty ; - \frac{5}{2}} \right) \cup \left( {3; + \infty } \right)\)

15 tháng 2 2018

f(x) = (3x2 – 10x + 3)(4x – 5)

+ Tam thức 3x2 – 10x + 3 có hai nghiệm x = 1/3 và x = 3, hệ số a = 3 > 0 nên mang dấu + nếu x < 1/3 hoặc x > 3 và mang dấu – nếu 1/3 < x < 3.

+ Nhị thức 4x – 5 có nghiệm x = 5/4.

Ta có bảng xét dấu:

Giải bài 2 trang 105 SGK Đại Số 10 | Giải toán lớp 10

Kết luận:

f(x) > 0 khi x ∈ (1/3; 5/4) ∪ x ∈ (3; +∞)

f(x) = 0 khi x ∈ {1/3; 5/4; 3}

f(x) < 0 khi x ∈ (–∞; 1/3) ∪ (5/4; 3)

14 tháng 12 2023

a: Đặt f(x)=0

=>\(-3x^2+2x=0\)

=>\(3x^2-2x=0\)

=>x(3x-2)=0

=>\(\left[{}\begin{matrix}x=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)

Bảng xét dấu:

loading...

b: Đặt G(x)=0

=>\(x^2-10x+25=0\)

=>\(\left(x-5\right)^2=0\)

=>x-5=0

=>x=5

Bảng xét dấu:

loading...

c: Đặt H(x)=0

=>\(4x^2-4x+1=0\)

=>\(\left(2x-1\right)^2=0\)

=>2x-1=0

=>x=1/2

Bảng xét dấu:

loading...

d: Đặt Q(x)=0

=>(2x+3)(x-5)=0

=>\(\left[{}\begin{matrix}2x+3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=5\end{matrix}\right.\)

Bảng xét dấu:

loading...

15 tháng 4 2018

Đáp án: B

Ta có bảng xét dấu:

Đề kiểm tra 15 phút Đại số 10 Chương 4 có đáp án (Đề 4)

Dựa vào bảng xét dấu ta thấy: f(x) > 0 khi x < -7 hoặc -1 < x < 1 hoặc x > 3

20 tháng 11 2021

Đặt \(g\left(x\right)=f\left(x\right)-10\) (bậc 4)

\(\Leftrightarrow\left\{{}\begin{matrix}g\left(1\right)=0\\g\left(2\right)=0\\g\left(3\right)=0\end{matrix}\right.\Leftrightarrow g\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-m\right)\) (m là hằng số)

\(\Leftrightarrow f\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-m\right)-10\\ \Leftrightarrow f\left(9\right)=8\cdot7\cdot6\left(9-m\right)-10=336\left(9-m\right)-10\\ f\left(-5\right)=\left(-6\right)\left(-7\right)\left(-8\right)\left(-5-m\right)-10=336\left(m+5\right)-10\)

Vậy \(A=336\left(9-m\right)+336\left(m+5\right)-20=4684\)

Chúc bạn hok tốt <3

1: A=(x-1)^2>=0

Dấu = xảy ra khi x=1

5: B=-(x^2+6x+10)

=-(x^2+6x+9+1)

=-(x+3)^2-1<=-1

Dấu = xảy ra khi x=-3

2: B=x^2+4x+4-9

=(x+2)^2-9>=-9

Dấu = xảy ra khi x=-2

6: =-(x^2-5x-3)

=-(x^2-5x+25/4-37/4)

=-(x-5/2)^2+37/4<=37/4

Dấu = xảy ra khi x=5/2

3: =x^2+x+1/4-1/4

=(x+1/2)^2-1/4>=-1/4
Dấu = xảy ra khi x=-1/2

7: =4x^2+4x+1-2

=(2x+1)^2-2>=-2

Dấu = xảy ra khi x=-1/2